These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 26036616)

  • 1. Seeded on-surface supramolecular growth for large area conductive donor-acceptor assembly.
    Goudappagouda ; Chithiravel S; Krishnamoorthy K; Gosavi SW; Babu SS
    Chem Commun (Camb); 2015 Jul; 51(52):10439-42. PubMed ID: 26036616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic self-assembly of charge-transfer nanofibers of tetrathiafulvalene derivatives with F4TCNQ.
    Jain A; Rao KV; Mogera U; Sagade AA; George SJ
    Chemistry; 2011 Oct; 17(44):12355-61. PubMed ID: 21922580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conductive nanoscopic fibrous assemblies containing helical tetrathiafulvalene stacks.
    Tatewaki Y; Hatanaka T; Tsunashima R; Nakamura T; Kimura M; Shirai H
    Chem Asian J; 2009 Sep; 4(9):1474-9. PubMed ID: 19569167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tetrathiafulvalene- (TTF-) Derived Oligopyrrolic Macrocycles.
    Jana A; Ishida M; Park JS; Bähring S; Jeppesen JO; Sessler JL
    Chem Rev; 2017 Feb; 117(4):2641-2710. PubMed ID: 27753290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Donor-acceptor complex of a new bis-TTF donor containing a pyridine diester spacer with TCNQ as the acceptor: a disappointing system.
    Kaboub L; Fabre JM; Vendier L; Legros JP
    Acta Crystallogr C; 2010 Aug; 66(Pt 8):o429-32. PubMed ID: 20679723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Semiconducting π-Extended Tetrathiafulvalene Derivatives.
    Yamada H; Yamashita M; Hayashi H; Suzuki M; Aratani N
    Chemistry; 2018 Dec; 24(70):18601-18612. PubMed ID: 30033615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanostructured donor-acceptor self assembly with improved photoconductivity.
    Saibal B; Ashar AZ; Devi RN; Narayan KS; Asha SK
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):19434-48. PubMed ID: 25283356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conductive PVDF-HFP nanofibers with embedded TTF-TCNQ charge transfer complex.
    Gal-Oz R; Patil N; Khalfin R; Cohen Y; Zussman E
    ACS Appl Mater Interfaces; 2013 Jul; 5(13):6066-72. PubMed ID: 23745509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent progress in morphology control of supramolecular fullerene assemblies and its applications.
    Babu SS; Möhwald H; Nakanishi T
    Chem Soc Rev; 2010 Nov; 39(11):4021-35. PubMed ID: 20865187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organic donor-acceptor assemblies form coaxial p-n heterojunctions with high photoconductivity.
    Prasanthkumar S; Ghosh S; Nair VC; Saeki A; Seki S; Ajayaghosh A
    Angew Chem Int Ed Engl; 2015 Jan; 54(3):946-50. PubMed ID: 25430809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autoresolution of Segregated and Mixed p-n Stacks by Stereoselective Supramolecular Polymerization in Solution.
    Narayan B; Bejagam KK; Balasubramanian S; George SJ
    Angew Chem Int Ed Engl; 2015 Oct; 54(44):13053-7. PubMed ID: 26333201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supramolecular donor-acceptor hybrids of porphyrins/phthalocyanines with fullerenes/carbon nanotubes: electron transfer, sensing, switching, and catalytic applications.
    D'Souza F; Ito O
    Chem Commun (Camb); 2009 Sep; (33):4913-28. PubMed ID: 19668806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supramolecular control of organic p/n-heterojunctions by complementary hydrogen bonding.
    Black HT; Lin H; Bélanger-Gariépy F; Perepichka DF
    Faraday Discuss; 2014; 174():297-312. PubMed ID: 25263229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. π-Conjugated cyanostilbene derivatives: a unique self-assembly motif for molecular nanostructures with enhanced emission and transport.
    An BK; Gierschner J; Park SY
    Acc Chem Res; 2012 Apr; 45(4):544-54. PubMed ID: 22085759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coordination Assembly of Discoid Nanoparticles.
    Hirai K; Yeom B; Chang SH; Chi H; Mansfield JF; Lee B; Lee S; Uher C; Kotov NA
    Angew Chem Int Ed Engl; 2015 Jul; 54(31):8966-70. PubMed ID: 26095101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assemblies based on the "outer-surface interactions" of cucurbit[n]urils: new opportunities for supramolecular architectures and materials.
    Ni XL; Xiao X; Cong H; Zhu QJ; Xue SF; Tao Z
    Acc Chem Res; 2014 Apr; 47(4):1386-95. PubMed ID: 24673124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Barrier height formation in organic blends/metal interfaces: case of tetrathiafulvalene-tetracyanoquinodimethane/Au(111).
    Martínez JI; Abad E; Beltrán JI; Flores F; Ortega J
    J Chem Phys; 2013 Dec; 139(21):214706. PubMed ID: 24320393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acetylene-derived strong organic acceptors for planar and nonplanar push-pull chromophores.
    Kivala M; Diederich F
    Acc Chem Res; 2009 Feb; 42(2):235-48. PubMed ID: 19061332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of self-assembly process and seeded supramolecular polymerization of perylene bisimide organogelator.
    Ogi S; Stepanenko V; Sugiyasu K; Takeuchi M; Würthner F
    J Am Chem Soc; 2015 Mar; 137(9):3300-7. PubMed ID: 25689054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal engineering of dual channel p/n organic semiconductors by complementary hydrogen bonding.
    Black HT; Perepichka DF
    Angew Chem Int Ed Engl; 2014 Feb; 53(8):2138-42. PubMed ID: 24500891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.