These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 26036677)

  • 1. Higher shoe-surface interaction is associated with doubling of lower extremity injury risk in football codes: a systematic review and meta-analysis.
    Thomson A; Whiteley R; Bleakley C
    Br J Sports Med; 2015 Oct; 49(19):1245-52. PubMed ID: 26036677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Risk of Anterior Cruciate Ligament Injury in Athletes on Synthetic Playing Surfaces: A Systematic Review.
    Balazs GC; Pavey GJ; Brelin AM; Pickett A; Keblish DJ; Rue JP
    Am J Sports Med; 2015 Jul; 43(7):1798-804. PubMed ID: 25164575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Torsional injuries of the lower limb: an analysis of the frictional torque between different types of football turf and the shoe outsole.
    Smeets K; Jacobs P; Hertogs R; Luyckx JP; Innocenti B; Corten K; Ekstrand J; Bellemans J
    Br J Sports Med; 2012 Dec; 46(15):1078-83. PubMed ID: 22842236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Six different football shoes, one playing surface and the weather; Assessing variation in shoe-surface traction over one season of elite football.
    Thomson A; Whiteley R; Wilson M; Bleakley C
    PLoS One; 2019; 14(4):e0216364. PubMed ID: 31039209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rotational stiffness of American football shoes affects ankle biomechanics and injury severity.
    Button KD; Braman JE; Davison MA; Wei F; Schaeffer MC; Haut RC
    J Biomech Eng; 2015 Jun; 137(6):061004. PubMed ID: 25751589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Football playing surface and shoe design affect rotational traction.
    Villwock MR; Meyer EG; Powell JW; Fouty AJ; Haut RC
    Am J Sports Med; 2009 Mar; 37(3):518-25. PubMed ID: 19168808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Is there a relationship between ground and climatic conditions and injuries in football?
    Orchard J
    Sports Med; 2002; 32(7):419-32. PubMed ID: 12015804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rotational stiffness of football shoes influences talus motion during external rotation of the foot.
    Wei F; Meyer EG; Braman JE; Powell JW; Haut RC
    J Biomech Eng; 2012 Apr; 134(4):041002. PubMed ID: 22667677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Association of lower limb injury with boot cleat design and playing surface in elite soccer.
    O'Connor AM; James IT
    Foot Ankle Clin; 2013 Jun; 18(2):369-80. PubMed ID: 23707183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Footwear traction and lower extremity noncontact injury.
    Wannop JW; Luo G; Stefanyshyn DJ
    Med Sci Sports Exerc; 2013 Nov; 45(11):2137-43. PubMed ID: 23657169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of field condition and shoe type on lower extremity injuries in American Football.
    Iacovelli JN; Yang J; Thomas G; Wu H; Schiltz T; Foster DT
    Br J Sports Med; 2013 Aug; 47(12):789-93. PubMed ID: 23760553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Football cleat design and its effect on anterior cruciate ligament injuries. A three-year prospective study.
    Lambson RB; Barnhill BS; Higgins RW
    Am J Sports Med; 1996; 24(2):155-9. PubMed ID: 8775112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Could targeted exercise programmes prevent lower limb injury in community Australian football?
    Andrew N; Gabbe BJ; Cook J; Lloyd DG; Donnelly CJ; Nash C; Finch CF
    Sports Med; 2013 Aug; 43(8):751-63. PubMed ID: 23681448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sport-specific injury pattern recorded during anterior cruciate ligament reconstruction.
    Granan LP; Inacio MC; Maletis GB; Funahashi TT; Engebretsen L
    Am J Sports Med; 2013 Dec; 41(12):2814-8. PubMed ID: 24005874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rotational and peak torque stiffness of rugby shoes.
    Ballal MS; Usuelli FG; Montrasio UA; Molloy A; La Barbera L; Villa T; Banfi G
    Foot (Edinb); 2014 Sep; 24(3):107-10. PubMed ID: 25095720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rainfall, evaporation and the risk of non-contact anterior cruciate ligament injury in the Australian Football League.
    Orchard J; Seward H; McGivern J; Hood S
    Med J Aust; 1999 Apr; 170(7):304-6. PubMed ID: 10327970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incidence and risk factors for injuries to the anterior cruciate ligament in National Collegiate Athletic Association football: data from the 2004-2005 through 2008-2009 National Collegiate Athletic Association Injury Surveillance System.
    Dragoo JL; Braun HJ; Durham JL; Chen MR; Harris AH
    Am J Sports Med; 2012 May; 40(5):990-5. PubMed ID: 22491794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review of synthetic playing surfaces, the shoe-surface interface, and lower extremity injuries in athletes.
    Taylor SA; Fabricant PD; Khair MM; Haleem AM; Drakos MC
    Phys Sportsmed; 2012 Nov; 40(4):66-72. PubMed ID: 23306416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review of football injuries on third and fourth generation artificial turfs compared with natural turf.
    Williams S; Hume PA; Kara S
    Sports Med; 2011 Nov; 41(11):903-23. PubMed ID: 21985213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anterior Cruciate Ligament and Knee Injury Prevention Programs for Soccer Players: A Systematic Review and Meta-analysis.
    Grimm NL; Jacobs JC; Kim J; Denney BS; Shea KG
    Am J Sports Med; 2015 Aug; 43(8):2049-56. PubMed ID: 25451790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.