These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 26036749)

  • 1. Molecular characterization and expression profiles of neuropeptide precursors in the migratory locust.
    Hou L; Jiang F; Yang P; Wang X; Kang L
    Insect Biochem Mol Biol; 2015 Aug; 63():63-71. PubMed ID: 26036749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Annotation of novel neuropeptide precursors in the migratory locust based on transcript screening of a public EST database and mass spectrometry.
    Clynen E; Huybrechts J; Verleyen P; De Loof A; Schoofs L
    BMC Genomics; 2006 Aug; 7():201. PubMed ID: 16899111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and distribution of products from novel tryptopyrokinin genes in the locust, Locusta migratoria.
    Redeker J; Bläser M; Neupert S; Predel R
    Biochem Biophys Res Commun; 2017 Apr; 486(1):70-75. PubMed ID: 28257837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of the neuropeptide F 1 in regulating the appetite for food in Locusta migratoria.
    Tan S; Li A; Wang Y; Shi W
    Pest Manag Sci; 2019 May; 75(5):1304-1309. PubMed ID: 30350452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and characterization of a gene encoding a UBX domain-containing protein in the migratory locust, Locusta migratoria manilensis.
    He ZB; Xie Y; Si FL; Chen B
    Insect Sci; 2013 Aug; 20(4):497-504. PubMed ID: 23955945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Knockdown of the corazonin gene reveals its critical role in the control of gregarious characteristics in the desert locust.
    Sugahara R; Saeki S; Jouraku A; Shiotsuki T; Tanaka S
    J Insect Physiol; 2015 Aug; 79():80-7. PubMed ID: 26092175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristics and expression patterns of histone-modifying enzyme systems in the migratory locust.
    Guo S; Jiang F; Yang P; Liu Q; Wang X; Kang L
    Insect Biochem Mol Biol; 2016 Sep; 76():18-28. PubMed ID: 27343382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuropeptide ACP facilitates lipid oxidation and utilization during long-term flight in locusts.
    Hou L; Guo S; Wang Y; Nie X; Yang P; Ding D; Li B; Kang L; Wang X
    Elife; 2021 Jun; 10():. PubMed ID: 34151772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuroparsins, a family of conserved arthropod neuropeptides.
    Badisco L; Claeys I; Van Loy T; Van Hiel M; Franssens V; Simonet G; Vanden Broeck J
    Gen Comp Endocrinol; 2007; 153(1-3):64-71. PubMed ID: 17475261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microarray-based annotation of the gut transcriptome of the migratory locust, Locusta migratoria.
    Spit J; Badisco L; Vergauwen L; Knapen D; Vanden Broeck J
    Insect Mol Biol; 2016 Dec; 25(6):745-756. PubMed ID: 27479692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA methyltransferase 3 participates in behavioral phase change in the migratory locust.
    Hou L; Wang X; Yang P; Li B; Lin Z; Kang L; Wang X
    Insect Biochem Mol Biol; 2020 Jun; 121():103374. PubMed ID: 32283278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The TRH-ortholog EFLamide in the migratory locust.
    Veenstra JA; Šimo L
    Insect Biochem Mol Biol; 2020 Jan; 116():103281. PubMed ID: 31740347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and functional analysis of olfactory receptor family reveal unusual characteristics of the olfactory system in the migratory locust.
    Wang Z; Yang P; Chen D; Jiang F; Li Y; Wang X; Kang L
    Cell Mol Life Sci; 2015 Nov; 72(22):4429-43. PubMed ID: 26265180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of Neuropeptide Precursors in Polyneoptera (Insecta).
    Bläser M; Predel R
    Front Endocrinol (Lausanne); 2020; 11():197. PubMed ID: 32373067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of new members of the (short) neuropeptide F family in locusts and Caenorhabditis elegans.
    Clynen E; Husson SJ; Schoofs L
    Ann N Y Acad Sci; 2009 Apr; 1163():60-74. PubMed ID: 19456328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alternative migratory locust phenotypes are associated with differences in the expression of genes encoding the methylation machinery.
    Robinson KL; Tohidi-Esfahani D; Ponton F; Simpson SJ; Sword GA; Lo N
    Insect Mol Biol; 2016 Apr; 25(2):105-15. PubMed ID: 26612460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuropeptide ACP is required for fat body lipid metabolism homeostasis in locusts.
    Hou L; Guo S; Wang Y; Liu S; Wang X
    Insect Sci; 2024 Oct; 31(5):1453-1465. PubMed ID: 38227554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two types of albino mutants in desert and migratory locusts are caused by gene defects in the same signaling pathway.
    Sugahara R; Tanaka S; Jouraku A; Shiotsuki T
    Gene; 2017 Apr; 608():41-48. PubMed ID: 28119086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation and sequencing of two FMRFamide-related peptides from the gut of Locusta migratoria L.
    Hill SR; Orchard I
    Peptides; 2007 Aug; 28(8):1490-7. PubMed ID: 17707763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning and characterization of a third isoform of corazonin in the honey bee Apis mellifera.
    Verleyen P; Baggerman G; Mertens I; Vandersmissen T; Huybrechts J; Van Lommel A; De Loof A; Schoofs L
    Peptides; 2006 Mar; 27(3):493-9. PubMed ID: 16406615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.