These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Dynamic biomechanics of the human head in lateral impacts. Zhang J; Yoganandan N; Pintar FA Ann Adv Automot Med; 2009 Oct; 53():249-56. PubMed ID: 20184848 [TBL] [Abstract][Full Text] [Related]
5. Biomechanical analysis of atlas fractures: a study on 40 human atlas specimens. Gebauer M; Goetzen N; Barvencik F; Beil FT; Rupprecht M; Rueger JM; Püschel K; Morlock M; Amling M Spine (Phila Pa 1976); 2008 Apr; 33(7):766-70. PubMed ID: 18379403 [TBL] [Abstract][Full Text] [Related]
6. True compression of pelvic fractures under lateral impact. Ma Z; Wu Z; Bai L; Bi C; Zeng X; Qu A; Wang Q Int Orthop; 2019 Jul; 43(7):1679-1683. PubMed ID: 30022218 [TBL] [Abstract][Full Text] [Related]
7. The tolerance of the frontal bone to blunt impact. Cormier J; Manoogian S; Bisplinghoff J; Rowson S; Santago A; McNally C; Duma S; Bolte J J Biomech Eng; 2011 Feb; 133(2):021004. PubMed ID: 21280876 [TBL] [Abstract][Full Text] [Related]
9. Biomechanics of calcaneal fractures: a model for the motor vehicle. Seipel RC; Pintar FA; Yoganandan N; Boynton MD Clin Orthop Relat Res; 2001 Jul; (388):218-24. PubMed ID: 11451123 [TBL] [Abstract][Full Text] [Related]
10. Finite element analysis of pedestrian lower limb fractures by direct force: the result of being run over or impact? Li Z; Zou D; Liu N; Zhong L; Shao Y; Wan L; Huang P; Chen Y Forensic Sci Int; 2013 Jun; 229(1-3):43-51. PubMed ID: 23683907 [TBL] [Abstract][Full Text] [Related]
11. Comparison of brain responses between frontal and lateral impacts by finite element modeling. Zhang L; Yang KH; King AI J Neurotrauma; 2001 Jan; 18(1):21-30. PubMed ID: 11200247 [TBL] [Abstract][Full Text] [Related]
12. Biomechanical comparison of locking plate and crossing metallic and absorbable screws fixations for intra-articular calcaneal fractures. Ni M; Wong DW; Mei J; Niu W; Zhang M Sci China Life Sci; 2016 Sep; 59(9):958-64. PubMed ID: 27349998 [TBL] [Abstract][Full Text] [Related]
14. Odontoid fracture biomechanics. Ivancic PC Spine (Phila Pa 1976); 2014 Nov; 39(24):E1403-10. PubMed ID: 25271495 [TBL] [Abstract][Full Text] [Related]
15. Analysis of the structural behavior of the pelvis during lateral impact using the finite element method. Dawson JM; Khmelniker BV; McAndrew MP Accid Anal Prev; 1999; 31(1-2):109-19. PubMed ID: 10084625 [TBL] [Abstract][Full Text] [Related]
16. Ballistic impact to the forehead, zygoma, and mandible: comparison of human and frangible dummy face biomechanics. Viano DC; Bir C; Walilko T; Sherman D J Trauma; 2004 Jun; 56(6):1305-11. PubMed ID: 15211141 [TBL] [Abstract][Full Text] [Related]
17. A nonlinear finite element model validation study based on a novel experimental technique for inducing anterior wedge-shape fractures in human vertebral bodies in vitro. Dall'Ara E; Schmidt R; Pahr D; Varga P; Chevalier Y; Patsch J; Kainberger F; Zysset P J Biomech; 2010 Aug; 43(12):2374-80. PubMed ID: 20462582 [TBL] [Abstract][Full Text] [Related]
18. Finite element modeling of the human thoracolumbar spine. Liebschner MA; Kopperdahl DL; Rosenberg WS; Keaveny TM Spine (Phila Pa 1976); 2003 Mar; 28(6):559-65. PubMed ID: 12642762 [TBL] [Abstract][Full Text] [Related]
19. Influence of stiffness and shape of contact surface on skull fractures and biomechanical metrics of the human head of different population underlateral impacts. Shaoo D; Deck C; Yoganandan N; Willinger R Accid Anal Prev; 2015 Jul; 80():97-105. PubMed ID: 25897516 [TBL] [Abstract][Full Text] [Related]
20. X-ray-verified fractures are associated with finite element analysis-derived bone strength and trabecular microstructure in young adult men. Rudäng R; Darelid A; Nilsson M; Mellström D; Ohlsson C; Lorentzon M J Bone Miner Res; 2013 Nov; 28(11):2305-16. PubMed ID: 23658040 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]