These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 26037150)

  • 1. Simulation and experimental analysis of nanoindentation and mechanical properties of amorphous NiAl alloys.
    Wang CH; Fang TH; Cheng PC; Chiang CC; Chao KC
    J Mol Model; 2015 Jun; 21(6):161. PubMed ID: 26037150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Precise determination of Young's modulus of amorphous CuZr/nanocrystalline Cu multilayer via nanoindentation.
    Lassnig A; Zak S
    J Mater Res; 2023; 38(13):3324-3335. PubMed ID: 37485024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced mechanical properties and in vitro corrosion behavior of amorphous and devitrified Ti40Zr10Cu38Pd12 metallic glass.
    Fornell J; Van Steenberge N; Varea A; Rossinyol E; Pellicer E; Suriñach S; Baró MD; Sort J
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):1709-17. PubMed ID: 22098871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deformation-induced changeable Young's modulus with high strength in β-type Ti-Cr-O alloys for spinal fixture.
    Liu H; Niinomi M; Nakai M; Hieda J; Cho K
    J Mech Behav Biomed Mater; 2014 Feb; 30():205-13. PubMed ID: 24317494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical properties of orthodontic wires derived by instrumented indentation testing (IIT) according to ISO 14577.
    Zinelis S; Al Jabbari YS; Gaintantzopoulou M; Eliades G; Eliades T
    Prog Orthod; 2015; 16():19. PubMed ID: 26089176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hardness-Deformation Energy Relationship in Metals and Alloys: A Comparative Evaluation Based on Nanoindentation Testing and Thermodynamic Consideration.
    Yamamoto M; Tanaka M; Furukimi O
    Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between various deformation-induced products and mechanical properties in metastable Ti-30Zr-Mo alloys for biomedical applications.
    Zhao X; Niinomi M; Nakai M
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):2009-16. PubMed ID: 22098900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoindentation hardness of mineralized tissues.
    Oyen ML
    J Biomech; 2006; 39(14):2699-702. PubMed ID: 16253265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoindentation studies on amorphous, nanoquasicrystalline and nanocrystalline Zr8oPt2o and Zr75Pd25 alloys.
    Bhatt J; Pabi SK; Murty BS
    J Nanosci Nanotechnol; 2007 Feb; 7(2):658-62. PubMed ID: 17450810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microstructures and mechanical properties of metastable Ti-30Zr-(Cr, Mo) alloys with changeable Young's modulus for spinal fixation applications.
    Zhao X; Niinomi M; Nakai M; Miyamoto G; Furuhara T
    Acta Biomater; 2011 Aug; 7(8):3230-6. PubMed ID: 21569873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of Nanoindentation Behavior of HAZ on Glass Material Machined via ECSM Process through Simulation Approach.
    Singh T; Sharma S; Sidhu SS; Shlykov ES; Ablyaz TR
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deformation Mechanism of Depositing Amorphous Cu-Ta Alloy Film via Nanoindentation Test.
    Li W; Wang X; Feng X; Du Y; Zhang X; Xie Y; Chen X; Lu Y; Wang W
    Nanomaterials (Basel); 2022 Mar; 12(6):. PubMed ID: 35335834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Beta type Ti-Mo alloys with changeable Young's modulus for spinal fixation applications.
    Zhao X; Niinomi M; Nakai M; Hieda J
    Acta Biomater; 2012 May; 8(5):1990-7. PubMed ID: 22326686
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-situ SEM cyclic nanoindentation of pre-sintered and sintered zirconia materials.
    Juri AZ; Basak AK; Yin L
    J Mech Behav Biomed Mater; 2022 Feb; 126():105068. PubMed ID: 35026563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the effect of a compliant layer on indentation of an elastic material.
    Jia Y; Xuan FZ; Yang F
    J Mech Behav Biomed Mater; 2013 Sep; 25():33-40. PubMed ID: 23726924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic nanomechanical properties of novel Si-rich intermetallic coatings growth on a medical 316 LVM steel by hot dipping in a hypereutectic Al-25Si alloy.
    Frutos E; González-Carrasco JL
    J Mech Behav Biomed Mater; 2015 Jun; 46():93-103. PubMed ID: 25778350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A finite element model for direction-dependent mechanical response to nanoindentation of cortical bone allowing for anisotropic post-yield behavior of the tissue.
    Carnelli D; Gastaldi D; Sassi V; Contro R; Ortiz C; Vena P
    J Biomech Eng; 2010 Aug; 132(8):081008. PubMed ID: 20670057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The relationship between Shore hardness of elastomeric dental materials and Young's modulus.
    Meththananda IM; Parker S; Patel MP; Braden M
    Dent Mater; 2009 Aug; 25(8):956-9. PubMed ID: 19286248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of mineral content in determining the micromechanical properties of discrete trabecular bone remodeling packets.
    Smith LJ; Schirer JP; Fazzalari NL
    J Biomech; 2010 Dec; 43(16):3144-9. PubMed ID: 20723898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical characterization of living and dead undifferentiated human adipose-derived stem cells by using atomic force microscopy.
    Hu K; Zhao F; Wang Q
    Proc Inst Mech Eng H; 2013 Dec; 227(12):1319-23. PubMed ID: 24044923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.