These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 26037895)

  • 1. Nanofluidic Transport through Isolated Carbon Nanotube Channels: Advances, Controversies, and Challenges.
    Guo S; Meshot ER; Kuykendall T; Cabrini S; Fornasiero F
    Adv Mater; 2015 Oct; 27(38):5726-37. PubMed ID: 26037895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon nanotube-based electrochemical biosensing platforms: fundamentals, applications, and future possibilities.
    Luong JH; Male KB; Hrapovic S
    Recent Pat Biotechnol; 2007; 1(2):181-91. PubMed ID: 19075840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon Nanotubes-Based Nanofluidic Devices: Fabrication, Property and Application.
    Zhou H; Li W; Yu P
    ChemistryOpen; 2022 Nov; 11(11):e202200126. PubMed ID: 36351756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advances in carbon nanotube based electrochemical sensors for bioanalytical applications.
    Vashist SK; Zheng D; Al-Rubeaan K; Luong JH; Sheu FS
    Biotechnol Adv; 2011; 29(2):169-88. PubMed ID: 21034805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metallicity-Dependent Ultrafast Water Transport in Carbon Nanotubes.
    Velioğlu S; Karahan HE; Goh K; Bae TH; Chen Y; Chew JW
    Small; 2020 Jun; 16(25):e1907575. PubMed ID: 32432833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-assembling organic nanotubes with precisely defined, sub-nanometer pores: formation and mass transport characteristics.
    Gong B; Shao Z
    Acc Chem Res; 2013 Dec; 46(12):2856-66. PubMed ID: 23597055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube.
    Siria A; Poncharal P; Biance AL; Fulcrand R; Blase X; Purcell ST; Bocquet L
    Nature; 2013 Feb; 494(7438):455-8. PubMed ID: 23446417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A review of fabrication and applications of carbon nanotube film-based flexible electronics.
    Park S; Vosguerichian M; Bao Z
    Nanoscale; 2013 Mar; 5(5):1727-52. PubMed ID: 23381727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Asymmetric ion transport through ion-channel-mimetic solid-state nanopores.
    Guo W; Tian Y; Jiang L
    Acc Chem Res; 2013 Dec; 46(12):2834-46. PubMed ID: 23713693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Promotion of Water Channels for Enhanced Ion Transport in 14 nm Diameter Carbon Nanotubes.
    Sheng J; Zhu Q; Zeng X; Yang Z; Zhang X
    ACS Appl Mater Interfaces; 2017 Mar; 9(12):11009-11015. PubMed ID: 28264153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assembly of Highly Aligned Carbon Nanotubes Using an Electro-Fluidic Assembly Process.
    Chai Z; Seo J; Abbasi SA; Busnaina A
    ACS Nano; 2018 Dec; 12(12):12315-12323. PubMed ID: 30511834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ionic conductance of nanopores in microscale analysis systems: where microfluidics meets nanofluidics.
    Höltzel A; Tallarek U
    J Sep Sci; 2007 Jul; 30(10):1398-419. PubMed ID: 17623420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrokinetic ion transport in nanofluidics and membranes with applications in bioanalysis and beyond.
    Cheng LJ
    Biomicrofluidics; 2018 Mar; 12(2):021502. PubMed ID: 29713395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced nanofluidic transport in activated carbon nanoconduits.
    Emmerich T; Vasu KS; Niguès A; Keerthi A; Radha B; Siria A; Bocquet L
    Nat Mater; 2022 Jun; 21(6):696-702. PubMed ID: 35422506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tunable Ion Transport in Two-Dimensional Nanofluidic Channels.
    Xin W; Ling H; Cui Y; Qian Y; Kong XY; Jiang L; Wen L
    J Phys Chem Lett; 2023 Jan; 14(3):627-636. PubMed ID: 36634054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrokinetic Energy Conversion in Self-Assembled 2D Nanofluidic Channels with Janus Nanobuilding Blocks.
    Cheng H; Zhou Y; Feng Y; Geng W; Liu Q; Guo W; Jiang L
    Adv Mater; 2017 Jun; 29(23):. PubMed ID: 28397411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanofluidic charged-coupled devices for controlled DNA transport and separation.
    Nouri R; Guan W
    Nanotechnology; 2021 Jun; 32(34):. PubMed ID: 34081025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anomalous water transport in narrow-diameter carbon nanotubes.
    Wan Z; Gao Y; Chen X; Zeng XC; Francisco JS; Zhu C
    Proc Natl Acad Sci U S A; 2022 Sep; 119(39):e2211348119. PubMed ID: 36122221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics simulations of carbon nanotube porins in lipid bilayers.
    Vögele M; Köfinger J; Hummer G
    Faraday Discuss; 2018 Sep; 209(0):341-358. PubMed ID: 29974904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochromic Nanochannels for Visual Nanofluidic Manipulation in Integrated Ionic Circuits.
    Hao Z; Zhou T; Xiao T; Gong H; Zhang Q; Wang H; Zhai J
    ACS Appl Mater Interfaces; 2020 Dec; 12(51):57314-57321. PubMed ID: 33301676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.