These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 26038227)

  • 41. Photoactivated Adenylyl Cyclases as Optogenetic Modulators of Neuronal Activity.
    Henss T; Schneider M; Vettkötter D; Costa WS; Liewald JF; Gottschalk A
    Methods Mol Biol; 2022; 2483():61-76. PubMed ID: 35286669
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Neuroscience. Algae are the best engineers of optogenetic inhibitors.
    Vogt N
    Nat Methods; 2015 Sep; 12(9):806-7. PubMed ID: 26554088
    [No Abstract]   [Full Text] [Related]  

  • 43. Optogenetic control of plant growth by a microbial rhodopsin.
    Zhou Y; Ding M; Gao S; Yu-Strzelczyk J; Krischke M; Duan X; Leide J; Riederer M; Mueller MJ; Hedrich R; Konrad KR; Nagel G
    Nat Plants; 2021 Feb; 7(2):144-151. PubMed ID: 33594268
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Engineering a carotenoid-binding site in Dokdonia sp. PRO95 Na
    Anashkin VA; Bertsova YV; Mamedov AM; Mamedov MD; Arutyunyan AM; Baykov AA; Bogachev AV
    Photosynth Res; 2018 May; 136(2):161-169. PubMed ID: 28983723
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Microbial rhodopsins: scaffolds for ion pumps, channels, and sensors.
    Klare JP; Chizhov I; Engelhard M
    Results Probl Cell Differ; 2008; 45():73-122. PubMed ID: 17898961
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mechanism of voltage-sensitive fluorescence in a microbial rhodopsin.
    Maclaurin D; Venkatachalam V; Lee H; Cohen AE
    Proc Natl Acad Sci U S A; 2013 Apr; 110(15):5939-44. PubMed ID: 23530193
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Biochemical Analysis of Microbial Rhodopsins.
    Maresca JA; Keffer JL; Miller KJ
    Curr Protoc Microbiol; 2016 May; 41():1F.4.1-1F.4.18. PubMed ID: 27153387
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biophysics of rhodopsins and optogenetics.
    Kandori H
    Biophys Rev; 2020 Apr; 12(2):355-361. PubMed ID: 32065378
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Chimeric proton-pumping rhodopsins containing the cytoplasmic loop of bovine rhodopsin.
    Sasaki K; Yamashita T; Yoshida K; Inoue K; Shichida Y; Kandori H
    PLoS One; 2014; 9(3):e91323. PubMed ID: 24621599
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Microbial Rhodopsins.
    Gushchin I; Gordeliy V
    Subcell Biochem; 2018; 87():19-56. PubMed ID: 29464556
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Structural foundations of optogenetics: Determinants of channelrhodopsin ion selectivity.
    Berndt A; Lee SY; Wietek J; Ramakrishnan C; Steinberg EE; Rashid AJ; Kim H; Park S; Santoro A; Frankland PW; Iyer SM; Pak S; Ährlund-Richter S; Delp SL; Malenka RC; Josselyn SA; Carlén M; Hegemann P; Deisseroth K
    Proc Natl Acad Sci U S A; 2016 Jan; 113(4):822-9. PubMed ID: 26699459
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Molecular Properties and Optogenetic Applications of Enzymerhodopsins.
    Tsunoda SP; Sugiura M; Kandori H
    Adv Exp Med Biol; 2021; 1293():153-165. PubMed ID: 33398812
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Optogenetic cytosol acidification of mammalian cells using an inward proton-pumping rhodopsin.
    Vlasova A; Polyakova A; Gromova A; Dolotova S; Bukhalovich S; Bagaeva D; Bondarev N; Tsybrov F; Kovalev K; Mikhailov A; Sidorov D; Bogorodskiy A; Ilyinsky N; Kuklin A; Vlasov A; Borshchevskiy V; Ivanovich V
    Int J Biol Macromol; 2023 Jul; 242(Pt 3):124949. PubMed ID: 37224908
    [TBL] [Abstract][Full Text] [Related]  

  • 54. E. coli Expression and Purification of Microbial and Viral Rhodopsins.
    Balandin T; Volkov D; Alekseev A; Kovalev K; Bratanov D; Gordeliy V
    Methods Mol Biol; 2022; 2501():109-124. PubMed ID: 35857225
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Single-Cell Resolution Optogenetics Via Expression of Soma-Targeted Rhodopsins.
    Linghu C; Chen IW; Tanese D; Zampini V; Shemesh OA
    Methods Mol Biol; 2022; 2501():229-257. PubMed ID: 35857231
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Structure-Function Relationship of Channelrhodopsins.
    Kato HE
    Adv Exp Med Biol; 2021; 1293():35-53. PubMed ID: 33398806
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Insights into the Protein Functions and Absorption Wavelengths of Microbial Rhodopsins.
    Tsujimura M; Ishikita H
    J Phys Chem B; 2020 Dec; 124(52):11819-11826. PubMed ID: 33236904
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Optogenetic manipulation of neuronal and cardiomyocyte functions in zebrafish using microbial rhodopsins and adenylyl cyclases.
    Hagio H; Koyama W; Hosaka S; Song AD; Narantsatsral J; Matsuda K; Shimizu T; Hososhima S; Tsunoda SP; Kandori H; Hibi M
    Elife; 2023 Aug; 12():. PubMed ID: 37589546
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Optogenetics Comes of Age: Novel Inhibitory Light-Gated Anionic Channels Allow Efficient Silencing of Neural Function.
    Peralvárez-Marín A; Garriga P
    Chembiochem; 2016 Feb; 17(3):204-6. PubMed ID: 26670414
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Omega Rhodopsins: A Versatile Class of Microbial Rhodopsins.
    Kwon SK; Jun SH; Kim JF
    J Microbiol Biotechnol; 2020 May; 30(5):633-641. PubMed ID: 32482928
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.