These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 26038294)
21. [Research advances on the development and application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein system]. Tan JJ; Peng YZ; Huang GT Zhonghua Shao Shang Za Zhi; 2021 Jul; 37(7):681-687. PubMed ID: 34304411 [TBL] [Abstract][Full Text] [Related]
22. [Progress of genome engineering technology via clustered regularly interspaced short palindromic repeats--a review]. Li H; Qiu S; Song H Wei Sheng Wu Xue Bao; 2013 Oct; 53(10):1025-30. PubMed ID: 24409757 [TBL] [Abstract][Full Text] [Related]
23. Development of clustered regularly interspaced short palindromic repeats/CRISPR-associated technology for potential clinical applications. Huang YY; Zhang XY; Zhu P; Ji L World J Clin Cases; 2022 Jun; 10(18):5934-5945. PubMed ID: 35949837 [TBL] [Abstract][Full Text] [Related]
24. Short communication: Determination of Salmonella clustered regularly interspaced short palindromic repeats (CRISPR) diversity on dairy farms in Wisconsin and Minnesota. Wehnes CA; Rehberger TG; Barrangou R; Smith AH J Dairy Sci; 2014 Oct; 97(10):6370-7. PubMed ID: 25108866 [TBL] [Abstract][Full Text] [Related]
25. Generation of novel Il2rg-knockout mice with clustered regularly interspaced short palindromic repeats (CRISPR) and Cas9. Byambaa S; Uosaki H; Hara H; Nagao Y; Abe T; Shibata H; Nureki O; Ohmori T; Hanazono Y Exp Anim; 2020 Apr; 69(2):189-198. PubMed ID: 31801915 [TBL] [Abstract][Full Text] [Related]
26. Assembling the Streptococcus thermophilus clustered regularly interspaced short palindromic repeats (CRISPR) array for multiplex DNA targeting. Guo L; Xu K; Liu Z; Zhang C; Xin Y; Zhang Z Anal Biochem; 2015 Jun; 478():131-3. PubMed ID: 25748774 [TBL] [Abstract][Full Text] [Related]
27. Clustered Regularly Interspaced Short Palindromic Repeats and Clustered Regularly Interspaced Short Palindromic Repeats-Associated Protein 9 System: Factors Affecting Precision Gene Editing Efficiency and Optimization Strategies. Li J; Tang C; Liang G; Tian H; Lai G; Wu Y; Liu S; Zhang W; Liu S; Shao H Hum Gene Ther; 2023 Dec; 34(23-24):1190-1203. PubMed ID: 37642232 [TBL] [Abstract][Full Text] [Related]
28. Realigning gene editing with clinical research ethics: What the "CRISPR Twins" debacle means for Chinese and international research ethics governance. Kleiderman E; Ogbogu U Account Res; 2019 May; 26(4):257-264. PubMed ID: 31068009 [TBL] [Abstract][Full Text] [Related]
29. Dealing with Patent Fragmentation in Genetics: Can Patent Pools Facilitate the Development of CRISPR Gene-Editing Technology? Stasi A; Rodrigues IP J Law Med; 2019 Jul; 26(4):866-873. PubMed ID: 31682364 [TBL] [Abstract][Full Text] [Related]
30. Genome Editing: The Recent History and Perspective in Cardiovascular Diseases. Musunuru K J Am Coll Cardiol; 2017 Dec; 70(22):2808-2821. PubMed ID: 29191331 [TBL] [Abstract][Full Text] [Related]
31. Detection of Campylobacter jejuni diversity by clustered regularly interspaced short palindromic repeats (CRISPR) from an animal farm. Yeh HY; Awad A; Rothrock MJ Vet Med Sci; 2021 Nov; 7(6):2381-2388. PubMed ID: 34510794 [TBL] [Abstract][Full Text] [Related]
32. CRISPR-Cas9: a promising tool for gene editing on induced pluripotent stem cells. Kim EJ; Kang KH; Ju JH Korean J Intern Med; 2017 Jan; 32(1):42-61. PubMed ID: 28049282 [TBL] [Abstract][Full Text] [Related]
33. Translating genomic insights into cardiovascular medicine: Opportunities and challenges of CRISPR-Cas9. Zhang Y; Karakikes I Trends Cardiovasc Med; 2021 Aug; 31(6):341-348. PubMed ID: 32603681 [TBL] [Abstract][Full Text] [Related]
34. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas Advancement in Molecular Diagnostics and Signal Readout Approaches. Ahmed MZ; Badani P; Reddy R; Mishra G J Mol Diagn; 2021 Nov; 23(11):1433-1442. PubMed ID: 34454111 [TBL] [Abstract][Full Text] [Related]
35. Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 Gene Editing Technique in Xenotransplantation. Naeimi Kararoudi M; Hejazi SS; Elmas E; Hellström M; Naeimi Kararoudi M; Padma AM; Lee D; Dolatshad H Front Immunol; 2018; 9():1711. PubMed ID: 30233563 [TBL] [Abstract][Full Text] [Related]
36. [Overview of patents on targeted genome editing technologies and their implications for innovation and entrepreneurship education in universities]. Fan XY; Lin YP; Liao GJ; Xie JP Yi Chuan; 2015 Dec; 37(12):1258-62. PubMed ID: 26704951 [TBL] [Abstract][Full Text] [Related]
37. Gene editing in dermatology: Harnessing CRISPR for the treatment of cutaneous disease. Baker C; Hayden MS F1000Res; 2020; 9():281. PubMed ID: 32528662 [TBL] [Abstract][Full Text] [Related]
38. A complex of Cas proteins 5, 6, and 7 is required for the biogenesis and stability of clustered regularly interspaced short palindromic repeats (crispr)-derived rnas (crrnas) in Haloferax volcanii. Brendel J; Stoll B; Lange SJ; Sharma K; Lenz C; Stachler AE; Maier LK; Richter H; Nickel L; Schmitz RA; Randau L; Allers T; Urlaub H; Backofen R; Marchfelder A J Biol Chem; 2014 Mar; 289(10):7164-7177. PubMed ID: 24459147 [TBL] [Abstract][Full Text] [Related]
39. [Crispr-Cas9 Gene Editing Revolution and the Its Ethical and Legal Challenges]. Bellver Capella V Cuad Bioet; 2016; 27(90):223-39. PubMed ID: 27637196 [TBL] [Abstract][Full Text] [Related]
40. Applications of kidney organoids derived from human pluripotent stem cells. Kim YK; Nam SA; Yang CW Korean J Intern Med; 2018 Jul; 33(4):649-659. PubMed ID: 29961307 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]