These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 26038294)
41. Heterogeneous diversity of spacers within CRISPR (clustered regularly interspaced short palindromic repeats). He J; Deem MW Phys Rev Lett; 2010 Sep; 105(12):128102. PubMed ID: 20867676 [TBL] [Abstract][Full Text] [Related]
42. Strategies for Optimization of the Clustered Regularly Interspaced Short Palindromic Repeat-Based Genome Editing System for Enhanced Editing Specificity. Wang YM; Wang HZ; Jian YZ; Luo ZT; Shao HW; Zhang WF Hum Gene Ther; 2022 Apr; 33(7-8):358-370. PubMed ID: 34963339 [TBL] [Abstract][Full Text] [Related]
43. Survey of clustered regularly interspaced short palindromic repeats and their associated Cas proteins (CRISPR/Cas) systems in multiple sequenced strains of Klebsiella pneumoniae. Ostria-Hernández ML; Sánchez-Vallejo CJ; Ibarra JA; Castro-Escarpulli G BMC Res Notes; 2015 Aug; 8():332. PubMed ID: 26238567 [TBL] [Abstract][Full Text] [Related]
44. CRISPR Cas System: An efficient tool for cancer modelling. Akhtar M; Jamal T; Khan M; Khan SR; Haider S; Jalil F J Pak Med Assoc; 2021 Feb; 71(2(B)):718-724. PubMed ID: 33941966 [TBL] [Abstract][Full Text] [Related]
45. Advances in therapeutic application of CRISPR-Cas9. Sun J; Wang J; Zheng D; Hu X Brief Funct Genomics; 2020 May; 19(3):164-174. PubMed ID: 31769791 [TBL] [Abstract][Full Text] [Related]
46. Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein and hairy roots: a perfect match for gene functional analysis and crop improvement. Alamillo JM; López CM; Martínez Rivas FJ; Torralbo F; Bulut M; Alseekh S Curr Opin Biotechnol; 2023 Feb; 79():102876. PubMed ID: 36621223 [TBL] [Abstract][Full Text] [Related]
47. CRISPR/Cascade 9-Mediated Genome Editing-Challenges and Opportunities. Roy B; Zhao J; Yang C; Luo W; Xiong T; Li Y; Fang X; Gao G; Singh CO; Madsen L; Zhou Y; Kristiansen K Front Genet; 2018; 9():240. PubMed ID: 30026755 [TBL] [Abstract][Full Text] [Related]
48. CRISPR in cancer biology and therapy. Katti A; Diaz BJ; Caragine CM; Sanjana NE; Dow LE Nat Rev Cancer; 2022 May; 22(5):259-279. PubMed ID: 35194172 [TBL] [Abstract][Full Text] [Related]
49. Key challenges in bringing CRISPR-mediated somatic cell therapy into the clinic. Nicol D; Eckstein L; Morrison M; Sherkow JS; Otlowski M; Whitton T; Bubela T; Burdon KP; Chalmers D; Chan S; Charlesworth J; Critchley C; Crossley M; de Lacey S; Dickinson JL; Hewitt AW; Kamens J; Kato K; Kleiderman E; Kodama S; Liddicoat J; Mackey DA; Newson AJ; Nielsen J; Wagner JK; McWhirter RE Genome Med; 2017 Sep; 9(1):85. PubMed ID: 28946923 [TBL] [Abstract][Full Text] [Related]
50. The Challenge of CRISPR-Cas Toward Bioethics. Gonzalez-Avila LU; Vega-López JM; Pelcastre-Rodríguez LI; Cabrero-Martínez OA; Hernández-Cortez C; Castro-Escarpulli G Front Microbiol; 2021; 12():657981. PubMed ID: 34122373 [TBL] [Abstract][Full Text] [Related]
51. Genome editing with the CRISPR-Cas system: an art, ethics and global regulatory perspective. Zhang D; Hussain A; Manghwar H; Xie K; Xie S; Zhao S; Larkin RM; Qing P; Jin S; Ding F Plant Biotechnol J; 2020 Aug; 18(8):1651-1669. PubMed ID: 32271968 [TBL] [Abstract][Full Text] [Related]
52. Genome Editing for Longer Lives: The Problem of Loneliness. Wareham CS J Bioeth Inq; 2020 Jun; 17(2):309-314. PubMed ID: 32152896 [TBL] [Abstract][Full Text] [Related]
53. He Jiankui´s gene-editing experiment and the non-identity problem. Alonso M; Savulescu J Bioethics; 2021 Jul; 35(6):563-573. PubMed ID: 33951203 [TBL] [Abstract][Full Text] [Related]
55. [Bioinformatics Analysis of Clustered Regularly Interspaced Short Palindromic Repeats in the Genomes of Shigella]. Wang P; Wang Y; Duan G; Xue Z; Wang L; Guo X; Yang H; Xi Y Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2015 Apr; 32(2):343-9. PubMed ID: 26211252 [TBL] [Abstract][Full Text] [Related]
56. A CRISPR response to pandemics?: Exploring the ethics of genetically engineering the human immune system. Germani F; Wäscher S; Biller-Andorno N EMBO Rep; 2021 Mar; 22(3):e52319. PubMed ID: 33615649 [TBL] [Abstract][Full Text] [Related]
57. [Analysis on clustered regularly interspaced short palindromic repeats loci polymorphism of Su YQ; Guo LM; Ge YJ; Xi JX; Wang YM; Miao KJ; Wu B; Xu DQ Zhonghua Liu Xing Bing Xue Za Zhi; 2020 Dec; 41(12):2125-2130. PubMed ID: 33378827 [No Abstract] [Full Text] [Related]
58. Delivery and Specificity of CRISPR-Cas9 Genome Editing Technologies for Human Gene Therapy. Gori JL; Hsu PD; Maeder ML; Shen S; Welstead GG; Bumcrot D Hum Gene Ther; 2015 Jul; 26(7):443-51. PubMed ID: 26068008 [TBL] [Abstract][Full Text] [Related]
59. Methods for Enhancing Clustered Regularly Interspaced Short Palindromic Repeats/Cas9-Mediated Homology-Directed Repair Efficiency. Tang XD; Gao F; Liu MJ; Fan QL; Chen DK; Ma WT Front Genet; 2019; 10():551. PubMed ID: 31263478 [TBL] [Abstract][Full Text] [Related]
60. Clustered regularly interspaced palindromic repeats-cas9-based strategies towards HIV eradication: A literature review. Miranda AV; Wiyono L; Nurachman LA J Pak Med Assoc; 2021 Feb; 71(Suppl 2)(2):S134-S139. PubMed ID: 33785958 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]