These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
318 related articles for article (PubMed ID: 26038321)
21. GIS-based assessment of groundwater quality for drinking and irrigation purposes in central Iraq. Makki ZF; Zuhaira AA; Al-Jubouri SM; Al-Hamd RKS; Cunningham LS Environ Monit Assess; 2021 Feb; 193(2):107. PubMed ID: 33532931 [TBL] [Abstract][Full Text] [Related]
22. Delineation of groundwater potential zones at micro-spatial units of Nagaon district in Assam, India, using GIS-based MCDA and AHP techniques. Bhuyan MJ; Deka N Environ Sci Pollut Res Int; 2024 Sep; 31(41):54107-54128. PubMed ID: 36504300 [TBL] [Abstract][Full Text] [Related]
23. Groundwater quality analysis using multivariate statistical techniques (case study: Fars province, Iran). Noshadi M; Ghafourian A Environ Monit Assess; 2016 Jul; 188(7):419. PubMed ID: 27317054 [TBL] [Abstract][Full Text] [Related]
24. Assessment of the chemical components of Famenin groundwater, western Iran. Jalali M Environ Geochem Health; 2007 Oct; 29(5):357-74. PubMed ID: 17256093 [TBL] [Abstract][Full Text] [Related]
25. Combining GIS with fuzzy multicriteria decision-making for landfill siting in a fast-growing urban region. Chang NB; Parvathinathan G; Breeden JB J Environ Manage; 2008 Apr; 87(1):139-53. PubMed ID: 17363133 [TBL] [Abstract][Full Text] [Related]
26. A GIS policy approach for assessing the effect of fertilizers on the quality of drinking and irrigation water and wellhead protection zones (Crete, Greece). Kourgialas NN; Karatzas GP; Koubouris GC J Environ Manage; 2017 Mar; 189():150-159. PubMed ID: 28013089 [TBL] [Abstract][Full Text] [Related]
27. Integrated assessment of groundwater potential zones and artificial recharge sites using GIS and Fuzzy-AHP: a case study in Peddavagu watershed, India. Shekar PR; Mathew A Environ Monit Assess; 2023 Jun; 195(7):906. PubMed ID: 37382701 [TBL] [Abstract][Full Text] [Related]
28. Groundwater vulnerability assessment using fuzzy logic: a case study in the Zayandehrood aquifers, Iran. Rezaei F; Safavi HR; Ahmadi A Environ Manage; 2013 Jan; 51(1):267-77. PubMed ID: 23117397 [TBL] [Abstract][Full Text] [Related]
29. Prevention of landfill pollution by multicriteria spatial decision support systems (MC-SDSS): development, implementation, and case study. Khoshand A; Bafrani AH; Zahedipour M; Mirbagheri SA; Ehtehsami M Environ Sci Pollut Res Int; 2018 Mar; 25(9):8415-8431. PubMed ID: 29307066 [TBL] [Abstract][Full Text] [Related]
30. Spatial Prediction of Nitrate Concentration Using GIS and ANFIS Modelling in Groundwater. Jebastina N; Prince Arulraj G Bull Environ Contam Toxicol; 2018 Sep; 101(3):403-409. PubMed ID: 30069721 [TBL] [Abstract][Full Text] [Related]
31. Evaluation of groundwater quality and assessment of scaling potential and corrosiveness of water samples in Kadkan aquifer, Khorasan-e-Razavi Province, Iran. Esmaeili-Vardanjani M; Rasa I; Amiri V; Yazdi M; Pazand K Environ Monit Assess; 2015 Feb; 187(2):53. PubMed ID: 25638056 [TBL] [Abstract][Full Text] [Related]
32. Application of water quality index to evaluate groundwater quality (temporal and spatial variation) of an intensively exploited aquifer (Puebla valley, Mexico). Salcedo-Sánchez ER; Garrido Hoyos SE; Esteller Alberich MV; Martínez Morales M Environ Monit Assess; 2016 Oct; 188(10):573. PubMed ID: 27645142 [TBL] [Abstract][Full Text] [Related]
33. Groundwater quality for irrigation in an arid region-application of fuzzy logic techniques. Dhaoui O; Agoubi B; Antunes IM; Tlig L; Kharroubi A Environ Sci Pollut Res Int; 2023 Mar; 30(11):29773-29789. PubMed ID: 36422785 [TBL] [Abstract][Full Text] [Related]
34. Spatial analysis and GIS mapping of regional hotspots and potential health risk of fluoride concentrations in groundwater of northern Tanzania. Ijumulana J; Ligate F; Bhattacharya P; Mtalo F; Zhang C Sci Total Environ; 2020 Sep; 735():139584. PubMed ID: 32485458 [TBL] [Abstract][Full Text] [Related]
35. Groundwater vulnerability and risk mapping using GIS, modeling and a fuzzy logic tool. Nobre RC; Rotunno Filho OC; Mansur WJ; Nobre MM; Cosenza CA J Contam Hydrol; 2007 Dec; 94(3-4):277-92. PubMed ID: 17728007 [TBL] [Abstract][Full Text] [Related]
36. Evaluation of groundwater quality in Sivas province (Turkey) using water quality index and GIS-based analytic hierarchy process. Karakuş CB Int J Environ Health Res; 2019 Oct; 29(5):500-519. PubMed ID: 30507303 [TBL] [Abstract][Full Text] [Related]
37. Spatial analysis of groundwater suitability for drinking and irrigation in Lahore, Pakistan. Abbas Z; Mapoma HWT; Su C; Aziz SZ; Ma Y; Abbas N Environ Monit Assess; 2018 Jun; 190(7):391. PubMed ID: 29892786 [TBL] [Abstract][Full Text] [Related]
38. Hydrogeochemistry study and groundwater quality assessment in the north of Isfahan, Iran. Rezaei A; Hassani H Environ Geochem Health; 2018 Apr; 40(2):583-608. PubMed ID: 28664249 [TBL] [Abstract][Full Text] [Related]
39. Groundwater vulnerability assessment for organic compounds: fuzzy multi-criteria approach for Mexico city. Mazari-Hiriart M; Cruz-Bello G; Bojórquez-Tapia LA; Juárez-Marusich L; Alcantar-López G; Marín LE; Soto-Galera E Environ Manage; 2006 Mar; 37(3):410-21. PubMed ID: 16456622 [TBL] [Abstract][Full Text] [Related]
40. Prediction of irrigation water suitability using geospatial computing approach: a case study of Agartala city, India. Mallik S; Chakraborty A; Mishra U; Paul N Environ Sci Pollut Res Int; 2023 Nov; 30(55):116522-116537. PubMed ID: 35668267 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]