BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 26038328)

  • 21. Simultaneous enhancement of heavy metal removal and electricity generation in soil microbial fuel cell.
    Zhang J; Cao X; Wang H; Long X; Li X
    Ecotoxicol Environ Saf; 2020 Apr; 192():110314. PubMed ID: 32061983
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An MEC-MFC-coupled system for biohydrogen production from acetate.
    Sun M; Sheng GP; Zhang L; Xia CR; Mu ZX; Liu XW; Wang HL; Yu HQ; Qi R; Yu T; Yang M
    Environ Sci Technol; 2008 Nov; 42(21):8095-100. PubMed ID: 19031908
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Conditions for high resistance to starvation periods in bioelectrochemical systems.
    Ruiz Y; Ribot-Llobet E; Baeza JA; Guisasola A
    Bioelectrochemistry; 2015 Dec; 106(Pt B):328-34. PubMed ID: 26163745
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metals removal and recovery in bioelectrochemical systems: A review.
    Nancharaiah YV; Venkata Mohan S; Lens PN
    Bioresour Technol; 2015 Nov; 195():102-14. PubMed ID: 26116446
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electricity generation from indole and microbial community analysis in the microbial fuel cell.
    Luo Y; Zhang R; Liu G; Li J; Li M; Zhang C
    J Hazard Mater; 2010 Apr; 176(1-3):759-64. PubMed ID: 20006429
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Removal of sulfide and production of methane from carbon dioxide in microbial fuel cells-microbial electrolysis cell (MFCs-MEC) coupled system.
    Jiang Y; Su M; Li D
    Appl Biochem Biotechnol; 2014 Mar; 172(5):2720-31. PubMed ID: 24425301
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A comparison of microbial fuel cell and microbial electrolysis cell biosensors for real-time environmental monitoring.
    Adekunle A; Raghavan V; Tartakovsky B
    Bioelectrochemistry; 2019 Apr; 126():105-112. PubMed ID: 30540973
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Promoted Sb removal with hydrogen production in microbial electrolysis cell by ZIF-67-derived modified sulfate-reducing bacteria bio-cathode.
    Dai J; Huang Z; Zhang H; Shi H; Arulmani SRB; Liu X; Huang L; Yan J; Xiao T
    Sci Total Environ; 2023 Jan; 856(Pt 1):158839. PubMed ID: 36155030
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stability characterization and modeling of robust distributed benthic microbial fuel cell (DBMFC) system.
    Karra U; Huang G; Umaz R; Tenaglier C; Wang L; Li B
    Bioresour Technol; 2013 Sep; 144():477-84. PubMed ID: 23890975
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of a hybrid microbial fuel cell (MFC) and fuel cell (FC) system for improved cathodic efficiency and sustainability: the M2FC reactor.
    Eom H; Chung K; Kim I; Han JI
    Chemosphere; 2011 Oct; 85(4):672-6. PubMed ID: 21752422
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pre-acclimation of a wastewater inoculum to cellulose in an aqueous-cathode MEC improves power generation in air-cathode MFCs.
    Cheng S; Kiely P; Logan BE
    Bioresour Technol; 2011 Jan; 102(1):367-71. PubMed ID: 20580223
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electricity generation from the treatment of wastewater with a hybrid up-flow microbial fuel cell.
    Katuri KP; Scott K
    Biotechnol Bioeng; 2010 Sep; 107(1):52-8. PubMed ID: 20506286
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nitrate removal from groundwater driven by electricity generation and heterotrophic denitrification in a bioelectrochemical system.
    Tong Y; He Z
    J Hazard Mater; 2013 Nov; 262():614-9. PubMed ID: 24096001
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Concurrent desalination and hydrogen generation using microbial electrolysis and desalination cells.
    Luo H; Jenkins PE; Ren Z
    Environ Sci Technol; 2011 Jan; 45(1):340-4. PubMed ID: 21121677
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stimulating bioelectric generation and recovery of toxic metals through benthic microbial fuel cell driven by local sago (Cycas revoluta) waste.
    Daud NNM; Al-Zaqri N; Yaakop AS; Ibrahim MNM; Guerrero-Barajas C
    Environ Sci Pollut Res Int; 2024 Mar; 31(12):18750-18764. PubMed ID: 38349489
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrochemical reduction of carbon dioxide in an MFC-MEC system with a layer-by-layer self-assembly carbon nanotube/cobalt phthalocyanine modified electrode.
    Zhao H; Zhang Y; Zhao B; Chang Y; Li Z
    Environ Sci Technol; 2012 May; 46(9):5198-204. PubMed ID: 22475021
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Performance of microbial electrolysis cells with bioanodes grown at different external resistances.
    Rago L; Monpart N; Cortés P; Baeza JA; Guisasola A
    Water Sci Technol; 2016; 73(5):1129-35. PubMed ID: 26942536
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Continuous electricity production from artificial wastewater using a mediator-less microbial fuel cell.
    Moon H; Chang IS; Kim BH
    Bioresour Technol; 2006 Mar; 97(4):621-7. PubMed ID: 15939588
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of low-cost cathode catalysts for high yield biohydrogen production in microbial electrolysis cell.
    Wang L; Chen Y; Ye Y; Lu B; Zhu S; Shen S
    Water Sci Technol; 2011; 63(3):440-8. PubMed ID: 21278465
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electricity generation from food wastes and microbial community structure in microbial fuel cells.
    Jia J; Tang Y; Liu B; Wu D; Ren N; Xing D
    Bioresour Technol; 2013 Sep; 144():94-9. PubMed ID: 23859985
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.