These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 26038328)

  • 61. Toxicity detection in water containing heavy metal ions with a self-powered microbial fuel cell-based biosensor.
    Yu D; Bai L; Zhai J; Wang Y; Dong S
    Talanta; 2017 Jun; 168():210-216. PubMed ID: 28391844
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A method for high throughput bioelectrochemical research based on small scale microbial electrolysis cells.
    Call DF; Logan BE
    Biosens Bioelectron; 2011 Jul; 26(11):4526-31. PubMed ID: 21652198
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Copper recovery combined with electricity production in a microbial fuel cell.
    Heijne AT; Liu F; Weijden Rv; Weijma J; Buisman CJ; Hamelers HV
    Environ Sci Technol; 2010 Jun; 44(11):4376-81. PubMed ID: 20462261
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Improved performance of membrane free single-chamber air-cathode microbial fuel cells with nitric acid and ethylenediamine surface modified activated carbon fiber felt anodes.
    Zhu N; Chen X; Zhang T; Wu P; Li P; Wu J
    Bioresour Technol; 2011 Jan; 102(1):422-6. PubMed ID: 20594833
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Optimization studies of bio-hydrogen production in a coupled microbial electrolysis-dye sensitized solar cell system.
    Ajayi FF; Kim KY; Chae KJ; Choi MJ; Chang IS; Kim IS
    Photochem Photobiol Sci; 2010 Mar; 9(3):349-56. PubMed ID: 20221461
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Recovery of heavy metals from industrial wastewater using bioelectrochemical system inoculated with novel Castellaniella species.
    Amanze C; Zheng X; Man M; Yu Z; Ai C; Wu X; Xiao S; Xia M; Yu R; Wu X; Shen L; Liu Y; Li J; Dolgor E; Zeng W
    Environ Res; 2022 Apr; 205():112467. PubMed ID: 34863983
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Improved current and power density with a micro-scale microbial fuel cell due to a small characteristic length.
    Ren H; Torres CI; Parameswaran P; Rittmann BE; Chae J
    Biosens Bioelectron; 2014 Nov; 61():587-92. PubMed ID: 24956566
    [TBL] [Abstract][Full Text] [Related]  

  • 68. TiO
    Shan Y; Cui J; Liu Y; Zhao W
    Environ Res; 2020 Nov; 190():110010. PubMed ID: 32763281
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Ferric iron enhances electricity generation by Shewanella oneidensis MR-1 in MFCs.
    Wu D; Xing D; Lu L; Wei M; Liu B; Ren N
    Bioresour Technol; 2013 May; 135():630-4. PubMed ID: 23127834
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Hydrogen consumption in microbial electrochemical systems (MXCs): the role of homo-acetogenic bacteria.
    Parameswaran P; Torres CI; Lee HS; Rittmann BE; Krajmalnik-Brown R
    Bioresour Technol; 2011 Jan; 102(1):263-71. PubMed ID: 20430615
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Gram-positive bacteria covered bioanode in a membrane-electrode assembly for use in bioelectrochemical systems.
    Hubenova Y; Borisov G; Slavcheva E; Mitov M
    Bioelectrochemistry; 2022 Apr; 144():108011. PubMed ID: 34864272
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Membrane-less cloth cathode assembly (CCA) for scalable microbial fuel cells.
    Zhuang L; Zhou S; Wang Y; Liu C; Geng S
    Biosens Bioelectron; 2009 Aug; 24(12):3652-6. PubMed ID: 19556120
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Microbial electrodialysis cell for simultaneous water desalination and hydrogen gas production.
    Mehanna M; Kiely PD; Call DF; Logan BE
    Environ Sci Technol; 2010 Dec; 44(24):9578-83. PubMed ID: 21077623
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Design of a microbial fuel cell and its transition to microbial electrolytic cell for hydrogen production by electrohydrogenesis.
    Gupta P; Parkhey P; Joshi K; Mahilkar A
    Indian J Exp Biol; 2013 Oct; 51(10):860-5. PubMed ID: 24266111
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Fermentation pre-treatment of landfill leachate for enhanced electron recovery in a microbial electrolysis cell.
    Mahmoud M; Parameswaran P; Torres CI; Rittmann BE
    Bioresour Technol; 2014 Jan; 151():151-8. PubMed ID: 24231265
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Enhanced bioelectricity harvesting in microbial fuel cells treating food waste leachate produced from biohydrogen fermentation.
    Choi J; Ahn Y
    Bioresour Technol; 2015 May; 183():53-60. PubMed ID: 25723127
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Autotrophic nitrogen removal from ammonium at low applied voltage in a single-compartment microbial electrolysis cell.
    Zhan G; Zhang L; Li D; Su W; Tao Y; Qian J
    Bioresour Technol; 2012 Jul; 116():271-7. PubMed ID: 22572551
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Persistent Hydrogen Production by the Photo-Assisted Microbial Electrolysis Cell Using a p-Type Polyaniline Nanofiber Cathode.
    Jeon Y; Kim S
    ChemSusChem; 2016 Dec; 9(23):3276-3279. PubMed ID: 27882683
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Influence of anode potentials on selection of Geobacter strains in microbial electrolysis cells.
    Commault AS; Lear G; Packer MA; Weld RJ
    Bioresour Technol; 2013 Jul; 139():226-34. PubMed ID: 23665518
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Concurrent bio-electricity and biomass production in three Plant-Microbial Fuel Cells using Spartina anglica, Arundinella anomala and Arundo donax.
    Helder M; Strik DP; Hamelers HV; Kuhn AJ; Blok C; Buisman CJ
    Bioresour Technol; 2010 May; 101(10):3541-7. PubMed ID: 20097554
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.