BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 26038550)

  • 1. Uncoupling protein 1 binds one nucleotide per monomer and is stabilized by tightly bound cardiolipin.
    Lee Y; Willers C; Kunji ER; Crichton PG
    Proc Natl Acad Sci U S A; 2015 Jun; 112(22):6973-8. PubMed ID: 26038550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The molecular features of uncoupling protein 1 support a conventional mitochondrial carrier-like mechanism.
    Crichton PG; Lee Y; Kunji ER
    Biochimie; 2017 Mar; 134():35-50. PubMed ID: 28057583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. UCP1 - A sophisticated energy valve.
    Klingenberg M
    Biochimie; 2017 Mar; 134():19-27. PubMed ID: 27794497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. UCP1 in brite/beige adipose tissue mitochondria is functionally thermogenic.
    Shabalina IG; Petrovic N; de Jong JM; Kalinovich AV; Cannon B; Nedergaard J
    Cell Rep; 2013 Dec; 5(5):1196-203. PubMed ID: 24290753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression, folding, and proton transport activity of human uncoupling protein-1 (UCP1) in lipid membranes: evidence for associated functional forms.
    Hoang T; Smith MD; Jelokhani-Niaraki M
    J Biol Chem; 2013 Dec; 288(51):36244-58. PubMed ID: 24196960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial ROS regulate thermogenic energy expenditure and sulfenylation of UCP1.
    Chouchani ET; Kazak L; Jedrychowski MP; Lu GZ; Erickson BK; Szpyt J; Pierce KA; Laznik-Bogoslavski D; Vetrivelan R; Clish CB; Robinson AJ; Gygi SP; Spiegelman BM
    Nature; 2016 Apr; 532(7597):112-6. PubMed ID: 27027295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. UCP1: the only protein able to mediate adaptive non-shivering thermogenesis and metabolic inefficiency.
    Nedergaard J; Golozoubova V; Matthias A; Asadi A; Jacobsson A; Cannon B
    Biochim Biophys Acta; 2001 Mar; 1504(1):82-106. PubMed ID: 11239487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria.
    Fedorenko A; Lishko PV; Kirichok Y
    Cell; 2012 Oct; 151(2):400-13. PubMed ID: 23063128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carboxyatractyloside effects on brown-fat mitochondria imply that the adenine nucleotide translocator isoforms ANT1 and ANT2 may be responsible for basal and fatty-acid-induced uncoupling respectively.
    Shabalina IG; Kramarova TV; Nedergaard J; Cannon B
    Biochem J; 2006 Nov; 399(3):405-14. PubMed ID: 16831128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brown adipose tissue dynamics in wild-type and UCP1-knockout mice: in vivo insights with magnetic resonance.
    Grimpo K; Völker MN; Heppe EN; Braun S; Heverhagen JT; Heldmaier G
    J Lipid Res; 2014 Mar; 55(3):398-409. PubMed ID: 24343897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An ancient look at UCP1.
    Klingenspor M; Fromme T; Hughes DA; Manzke L; Polymeropoulos E; Riemann T; Trzcionka M; Hirschberg V; Jastroch M
    Biochim Biophys Acta; 2008; 1777(7-8):637-41. PubMed ID: 18396149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. UCP1: A transporter for H
    Bertholet AM; Kirichok Y
    Biochimie; 2017 Mar; 134():28-34. PubMed ID: 27984203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uncoupling protein-1 is not leaky.
    Shabalina IG; Ost M; Petrovic N; Vrbacky M; Nedergaard J; Cannon B
    Biochim Biophys Acta; 2010; 1797(6-7):773-84. PubMed ID: 20399195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Not all mitochondrial carrier proteins support permeability transition pore formation: no involvement of uncoupling protein 1.
    Crichton PG; Parker N; Vidal-Puig AJ; Brand MD
    Biosci Rep; 2009 Dec; 30(3):187-92. PubMed ID: 19622065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uncoupling protein-1 (UCP1) contributes to the basal proton conductance of brown adipose tissue mitochondria.
    Parker N; Crichton PG; Vidal-Puig AJ; Brand MD
    J Bioenerg Biomembr; 2009 Aug; 41(4):335-42. PubMed ID: 19705265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cold tolerance of UCP1-ablated mice: a skeletal muscle mitochondria switch toward lipid oxidation with marked UCP3 up-regulation not associated with increased basal, fatty acid- or ROS-induced uncoupling or enhanced GDP effects.
    Shabalina IG; Hoeks J; Kramarova TV; Schrauwen P; Cannon B; Nedergaard J
    Biochim Biophys Acta; 2010; 1797(6-7):968-80. PubMed ID: 20227385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ROS production in brown adipose tissue mitochondria: the question of UCP1-dependence.
    Shabalina IG; Vrbacký M; Pecinová A; Kalinovich AV; Drahota Z; Houštěk J; Mráček T; Cannon B; Nedergaard J
    Biochim Biophys Acta; 2014 Dec; 1837(12):2017-2030. PubMed ID: 24769119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes.
    Shi T; Wang F; Stieren E; Tong Q
    J Biol Chem; 2005 Apr; 280(14):13560-7. PubMed ID: 15653680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brown fat and the myth of diet-induced thermogenesis.
    Kozak LP
    Cell Metab; 2010 Apr; 11(4):263-7. PubMed ID: 20374958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. UCP1 mRNA does not produce heat.
    Nedergaard J; Cannon B
    Biochim Biophys Acta; 2013 May; 1831(5):943-9. PubMed ID: 23353596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.