BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

701 related articles for article (PubMed ID: 26038577)

  • 1. Extrachromosomal circular DNA is common in yeast.
    Møller HD; Parsons L; Jørgensen TS; Botstein D; Regenberg B
    Proc Natl Acad Sci U S A; 2015 Jun; 112(24):E3114-22. PubMed ID: 26038577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide Purification of Extrachromosomal Circular DNA from Eukaryotic Cells.
    Møller HD; Bojsen RK; Tachibana C; Parsons L; Botstein D; Regenberg B
    J Vis Exp; 2016 Apr; (110):e54239 |. PubMed ID: 27077531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of Extrachromosomal Circular DNA from Long Terminal Repeats of Retrotransposons in Saccharomyces cerevisiae.
    Møller HD; Larsen CE; Parsons L; Hansen AJ; Regenberg B; Mourier T
    G3 (Bethesda); 2015 Dec; 6(2):453-62. PubMed ID: 26681518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amplification of a Zygosaccharomyces bailii DNA segment in wine yeast genomes by extrachromosomal circular DNA formation.
    Galeote V; Bigey F; Beyne E; Novo M; Legras JL; Casaregola S; Dequin S
    PLoS One; 2011 Mar; 6(3):e17872. PubMed ID: 21423766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extrachromosomal circular DNAs and genomic sequence plasticity in eukaryotic cells.
    Gaubatz JW
    Mutat Res; 1990; 237(5-6):271-92. PubMed ID: 2079966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extrachromosomal circular DNA of tandemly repeated genomic sequences in Drosophila.
    Cohen S; Yacobi K; Segal D
    Genome Res; 2003 Jun; 13(6A):1133-45. PubMed ID: 12799349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circle-Seq reveals genomic and disease-specific hallmarks in urinary cell-free extrachromosomal circular DNAs.
    Lv W; Pan X; Han P; Wang Z; Feng W; Xing X; Wang Q; Qu K; Zeng Y; Zhang C; Xu Z; Li Y; Zheng T; Lin L; Liu C; Liu X; Li H; Henriksen RA; Bolund L; Lin L; Jin X; Yang H; Zhang X; Yin T; Regenberg B; He F; Luo Y
    Clin Transl Med; 2022 Apr; 12(4):e817. PubMed ID: 35474296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Small extrachromosomal circular DNA (eccDNA): major functions in evolution and cancer.
    Ling X; Han Y; Meng J; Zhong B; Chen J; Zhang H; Qin J; Pang J; Liu L
    Mol Cancer; 2021 Sep; 20(1):113. PubMed ID: 34479546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of extrachromosomal circular DNA in HeLa cells by nonhomologous recombination.
    van Loon N; Miller D; Murnane JP
    Nucleic Acids Res; 1994 Jul; 22(13):2447-52. PubMed ID: 8041604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Near-Random Distribution of Chromosome-Derived Circular DNA in the Condensed Genome of Pigeons and the Larger, More Repeat-Rich Human Genome.
    Møller HD; Ramos-Madrigal J; Prada-Luengo I; Gilbert MTP; Regenberg B
    Genome Biol Evol; 2020 Jan; 12(1):3762-3777. PubMed ID: 31882998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and characterization of extrachromosomal circular DNA in the silk gland of Bombyx mori.
    Zhu M; Tong X; Qiu Q; Pan J; Wei S; Ding Y; Feng Y; Hu X; Gong C
    Insect Sci; 2023 Dec; 30(6):1565-1578. PubMed ID: 36826848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of extrachromosomal DNA rings in Saccharomyces cerevisiae using site-specific recombination.
    Gartenberg MR
    Methods Mol Biol; 1999; 94():125-33. PubMed ID: 12844868
    [No Abstract]   [Full Text] [Related]  

  • 13. Characterization of extrachromosomal circular DNA in cattle using 676 whole genome sequencing datasets.
    Li F; Yang L; Han J; Han X; Peng L; Du Y; Xia H; Yang L; Zhou Y
    Anim Genet; 2022 Dec; 53(6):761-768. PubMed ID: 36226728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Circle-Seq: Isolation and Sequencing of Chromosome-Derived Circular DNA Elements in Cells.
    Møller HD
    Methods Mol Biol; 2020; 2119():165-181. PubMed ID: 31989524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ECCsplorer: a pipeline to detect extrachromosomal circular DNA (eccDNA) from next-generation sequencing data.
    Mann L; Seibt KM; Weber B; Heitkam T
    BMC Bioinformatics; 2022 Jan; 23(1):40. PubMed ID: 35030991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptation to diverse nitrogen-limited environments by deletion or extrachromosomal element formation of the GAP1 locus.
    Gresham D; Usaite R; Germann SM; Lisby M; Botstein D; Regenberg B
    Proc Natl Acad Sci U S A; 2010 Oct; 107(43):18551-6. PubMed ID: 20937885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid evolution of recombinant Saccharomyces cerevisiae for Xylose fermentation through formation of extra-chromosomal circular DNA.
    Demeke MM; Foulquié-Moreno MR; Dumortier F; Thevelein JM
    PLoS Genet; 2015 Mar; 11(3):e1005010. PubMed ID: 25738959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tissue-specific and age-related variations in repetitive sequences of mouse extrachromosomal circular DNAs.
    Gaubatz JW; Flores SC
    Mutat Res; 1990 Jan; 237(1):29-36. PubMed ID: 2320037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Circular DNA elements of chromosomal origin are common in healthy human somatic tissue.
    Møller HD; Mohiyuddin M; Prada-Luengo I; Sailani MR; Halling JF; Plomgaard P; Maretty L; Hansen AJ; Snyder MP; Pilegaard H; Lam HYK; Regenberg B
    Nat Commun; 2018 Mar; 9(1):1069. PubMed ID: 29540679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purification of circular YACs from yeast cells for DNA sequencing.
    Leem SH; Yoon YH; Kim SI; Larionov V
    Genome; 2008 Feb; 51(2):155-8. PubMed ID: 18356949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.