These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 26038804)

  • 1. Benchmarking Data Sets for the Evaluation of Virtual Ligand Screening Methods: Review and Perspectives.
    Lagarde N; Zagury JF; Montes M
    J Chem Inf Model; 2015 Jul; 55(7):1297-307. PubMed ID: 26038804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An unbiased method to build benchmarking sets for ligand-based virtual screening and its application to GPCRs.
    Xia J; Jin H; Liu Z; Zhang L; Wang XS
    J Chem Inf Model; 2014 May; 54(5):1433-50. PubMed ID: 24749745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. VS-APPLE: A Virtual Screening Algorithm Using Promiscuous Protein-Ligand Complexes.
    Okuno T; Kato K; Terada TP; Sasai M; Chikenji G
    J Chem Inf Model; 2015 Jun; 55(6):1108-19. PubMed ID: 26057716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Development of Target-Specific Pose Filter Ensembles To Boost Ligand Enrichment for Structure-Based Virtual Screening.
    Xia J; Hsieh JH; Hu H; Wu S; Wang XS
    J Chem Inf Model; 2017 Jun; 57(6):1414-1425. PubMed ID: 28511009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward a benchmarking data set able to evaluate ligand- and structure-based virtual screening using public HTS data.
    Lindh M; Svensson F; Schaal W; Zhang J; Sköld C; Brandt P; Karlén A
    J Chem Inf Model; 2015 Feb; 55(2):343-53. PubMed ID: 25564966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. REPROVIS-DB: a benchmark system for ligand-based virtual screening derived from reproducible prospective applications.
    Ripphausen P; Wassermann AM; Bajorath J
    J Chem Inf Model; 2011 Oct; 51(10):2467-73. PubMed ID: 21902278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How to benchmark methods for structure-based virtual screening of large compound libraries.
    Christofferson AJ; Huang N
    Methods Mol Biol; 2012; 819():187-95. PubMed ID: 22183538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Docking ligands into flexible and solvated macromolecules. 7. Impact of protein flexibility and water molecules on docking-based virtual screening accuracy.
    Therrien E; Weill N; Tomberg A; Corbeil CR; Lee D; Moitessier N
    J Chem Inf Model; 2014 Nov; 54(11):3198-210. PubMed ID: 25280064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Benchmarking methods and data sets for ligand enrichment assessment in virtual screening.
    Xia J; Tilahun EL; Reid TE; Zhang L; Wang XS
    Methods; 2015 Jan; 71():146-57. PubMed ID: 25481478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Virtual screening in drug design.
    Lill M
    Methods Mol Biol; 2013; 993():1-12. PubMed ID: 23568460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recipes for the selection of experimental protein conformations for virtual screening.
    Rueda M; Bottegoni G; Abagyan R
    J Chem Inf Model; 2010 Jan; 50(1):186-93. PubMed ID: 20000587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Importance of the pharmacological profile of the bound ligand in enrichment on nuclear receptors: toward the use of experimentally validated decoy ligands.
    Lagarde N; Zagury JF; Montes M
    J Chem Inf Model; 2014 Oct; 54(10):2915-44. PubMed ID: 25250508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward fully automated high performance computing drug discovery: a massively parallel virtual screening pipeline for docking and molecular mechanics/generalized Born surface area rescoring to improve enrichment.
    Zhang X; Wong SE; Lightstone FC
    J Chem Inf Model; 2014 Jan; 54(1):324-37. PubMed ID: 24358939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of several molecular docking programs: pose prediction and virtual screening accuracy.
    Cross JB; Thompson DC; Rai BK; Baber JC; Fan KY; Hu Y; Humblet C
    J Chem Inf Model; 2009 Jun; 49(6):1455-74. PubMed ID: 19476350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient virtual screening using multiple protein conformations described as negative images of the ligand-binding site.
    Virtanen SI; Pentikäinen OT
    J Chem Inf Model; 2010 Jun; 50(6):1005-11. PubMed ID: 20504004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SABRE: ligand/structure-based virtual screening approach using consensus molecular-shape pattern recognition.
    Wei NN; Hamza A
    J Chem Inf Model; 2014 Jan; 54(1):338-46. PubMed ID: 24328054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Critical comparison of virtual screening methods against the MUV data set.
    Tiikkainen P; Markt P; Wolber G; Kirchmair J; Distinto S; Poso A; Kallioniemi O
    J Chem Inf Model; 2009 Oct; 49(10):2168-78. PubMed ID: 19799417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Virtual screening of compound libraries.
    Cerqueira NM; Sousa SF; Fernandes PA; Ramos MJ
    Methods Mol Biol; 2009; 572():57-70. PubMed ID: 20694685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel approach for efficient pharmacophore-based virtual screening: method and applications.
    Dror O; Schneidman-Duhovny D; Inbar Y; Nussinov R; Wolfson HJ
    J Chem Inf Model; 2009 Oct; 49(10):2333-43. PubMed ID: 19803502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of New Methods Needs Proper Evaluation-Benchmarking Sets for Machine Learning Experiments for Class A GPCRs.
    Leśniak D; Podlewska S; Jastrzębski S; Sieradzki I; Bojarski AJ; Tabor J
    J Chem Inf Model; 2019 Dec; 59(12):4974-4992. PubMed ID: 31604014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.