These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
565 related articles for article (PubMed ID: 26039032)
1. Broad-Spectrum Antimicrobial/Antifouling Soft Material Coatings Using Poly(ethylenimine) as a Tailorable Scaffold. Cheng W; Yang C; Ding X; Engler AC; Hedrick JL; Yang YY Biomacromolecules; 2015 Jul; 16(7):1967-77. PubMed ID: 26039032 [TBL] [Abstract][Full Text] [Related]
2. Stable Fabrication of Zwitterionic Coating Based on Copper-Phenolic Networks on Contact Lens with Improved Surface Wettability and Broad-Spectrum Antimicrobial Activity. Liu G; Li K; Wang H; Ma L; Yu L; Nie Y ACS Appl Mater Interfaces; 2020 Apr; 12(14):16125-16136. PubMed ID: 32202402 [TBL] [Abstract][Full Text] [Related]
3. Antibacterial and antifouling catheter coatings using surface grafted PEG-b-cationic polycarbonate diblock copolymers. Ding X; Yang C; Lim TP; Hsu LY; Engler AC; Hedrick JL; Yang YY Biomaterials; 2012 Oct; 33(28):6593-603. PubMed ID: 22748920 [TBL] [Abstract][Full Text] [Related]
4. Bioresorbable Polyester Coatings with Antifouling and Antimicrobial Properties for Prevention of Biofilm Formation in Early Stage Infections on Ti6Al4V Hard-Tissue Implants. Zermeño-Pérez D; Chouirfa H; Rodriguez BJ; Dürig T; Duffy P; Cróinín TÓ ACS Appl Bio Mater; 2024 Aug; 7(8):5728-5739. PubMed ID: 39037897 [TBL] [Abstract][Full Text] [Related]
6. Rationally designed dual functional block copolymers for bottlebrush-like coatings: In vitro and in vivo antimicrobial, antibiofilm, and antifouling properties. Gao Q; Yu M; Su Y; Xie M; Zhao X; Li P; Ma PX Acta Biomater; 2017 Mar; 51():112-124. PubMed ID: 28131941 [TBL] [Abstract][Full Text] [Related]
8. Autoclaving-Derived Surface Coating with In Vitro and In Vivo Antimicrobial and Antibiofilm Efficacies. Su Y; Zhi Z; Gao Q; Xie M; Yu M; Lei B; Li P; Ma PX Adv Healthc Mater; 2017 Mar; 6(6):. PubMed ID: 28128893 [TBL] [Abstract][Full Text] [Related]
9. Quantitative fabrication, performance optimization and comparison of PEG and zwitterionic polymer antifouling coatings. Xing CM; Meng FN; Quan M; Ding K; Dang Y; Gong YK Acta Biomater; 2017 Sep; 59():129-138. PubMed ID: 28663144 [TBL] [Abstract][Full Text] [Related]
10. Investigation of the role of hydrophilic chain length in amphiphilic perfluoropolyether/poly(ethylene glycol) networks: towards high-performance antifouling coatings. Wang Y; Pitet LM; Finlay JA; Brewer LH; Cone G; Betts DE; Callow ME; Callow JA; Wendt DE; Hillmyer MA; DeSimonea JM Biofouling; 2011; 27(10):1139-50. PubMed ID: 22087876 [TBL] [Abstract][Full Text] [Related]
11. Rapid Mussel-Inspired Surface Zwitteration for Enhanced Antifouling and Antibacterial Properties. Asha AB; Chen Y; Zhang H; Ghaemi S; Ishihara K; Liu Y; Narain R Langmuir; 2019 Feb; 35(5):1621-1630. PubMed ID: 30558423 [TBL] [Abstract][Full Text] [Related]
12. Antibiofilm Nitric Oxide-Releasing Polydopamine Coatings. Sadrearhami Z; Shafiee FN; Ho KKK; Kumar N; Krasowska M; Blencowe A; Wong EHH; Boyer C ACS Appl Mater Interfaces; 2019 Feb; 11(7):7320-7329. PubMed ID: 30688429 [TBL] [Abstract][Full Text] [Related]
13. Amphiphilic triblock copolymers with PEGylated hydrocarbon structures as environmentally friendly marine antifouling and fouling-release coatings. Zhou Z; Calabrese DR; Taylor W; Finlay JA; Callow ME; Callow JA; Fischer D; Kramer EJ; Ober CK Biofouling; 2014; 30(5):589-604. PubMed ID: 24730510 [TBL] [Abstract][Full Text] [Related]
14. Crosslinked Platform Coatings Incorporating Bioactive Signals for the Control of Biointerfacial Interactions. Ozcelik B; Chen R; Glattauer V; Kumar N; Willcox MP; Thissen H Macromol Biosci; 2017 Apr; 17(4):. PubMed ID: 27762506 [TBL] [Abstract][Full Text] [Related]
15. Contact lenses coated with hybrid multifunctional ternary nanocoatings (Phytomolecule-coated ZnO nanoparticles:Gallic Acid:Tobramycin) for the treatment of bacterial and fungal keratitis. Khan SA; Shahid S; Mahmood T; Lee CS Acta Biomater; 2021 Jul; 128():262-276. PubMed ID: 33866034 [TBL] [Abstract][Full Text] [Related]
16. Sterilization effects on starPEG coated polymer surfaces: characterization and cell viability. Lleixà Calvet J; Grafahrend D; Klee D; Möller M J Mater Sci Mater Med; 2008 Apr; 19(4):1631-6. PubMed ID: 18228118 [TBL] [Abstract][Full Text] [Related]
17. Protein and bacterial fouling characteristics of peptide and antibody decorated surfaces of PEG-poly(acrylic acid) co-polymers. Wagner VE; Koberstein JT; Bryers JD Biomaterials; 2004 May; 25(12):2247-63. PubMed ID: 14741590 [TBL] [Abstract][Full Text] [Related]
18. Improved performances of intraocular lenses by poly(ethylene glycol) chemical coatings. Bozukova D; Pagnoulle C; De Pauw-Gillet MC; Desbief S; Lazzaroni R; Ruth N; Jérôme R; Jérôme C Biomacromolecules; 2007 Aug; 8(8):2379-87. PubMed ID: 17608449 [TBL] [Abstract][Full Text] [Related]
19. Phomopsidione nanoparticles coated contact lenses reduce microbial keratitis causing pathogens. Bin Sahadan MY; Tong WY; Tan WN; Leong CR; Bin Misri MN; Chan M; Cheng SY; Shaharuddin S Exp Eye Res; 2019 Jan; 178():10-14. PubMed ID: 30243569 [TBL] [Abstract][Full Text] [Related]
20. Toward Infection-Resistant Surfaces: Achieving High Antimicrobial Peptide Potency by Modulating the Functionality of Polymer Brush and Peptide. Yu K; Lo JC; Mei Y; Haney EF; Siren E; Kalathottukaren MT; Hancock RE; Lange D; Kizhakkedathu JN ACS Appl Mater Interfaces; 2015 Dec; 7(51):28591-605. PubMed ID: 26641308 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]