BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 26039091)

  • 1. Differences in the metabolic rates of exploited and unexploited fish populations: a signature of recreational fisheries induced evolution?
    Hessenauer JM; Vokoun JC; Suski CD; Davis J; Jacobs R; O'Donnell E
    PLoS One; 2015; 10(6):e0128336. PubMed ID: 26039091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hormonal responsiveness to stress is negatively associated with vulnerability to angling capture in fish.
    Louison MJ; Adhikari S; Stein JA; Suski CD
    J Exp Biol; 2017 Jul; 220(Pt 14):2529-2535. PubMed ID: 28724703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recreational fishing selectively captures individuals with the highest fitness potential.
    Sutter DA; Suski CD; Philipp DP; Klefoth T; Wahl DH; Kersten P; Cooke SJ; Arlinghaus R
    Proc Natl Acad Sci U S A; 2012 Dec; 109(51):20960-5. PubMed ID: 23213220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of selection for vulnerability to angling on foraging ecology in largemouth bass Micropterus salmoides.
    Nannini MA; Wahl DH; Philipp DP; Cooke SJ
    J Fish Biol; 2011 Oct; 79(4):1017-28. PubMed ID: 21967587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiological and behavioral consequences of long-term artificial selection for vulnerability to recreational angling in a teleost fish.
    Cooke SJ; Suski CD; Ostrand KG; Wahl DH; Philipp DP
    Physiol Biochem Zool; 2007; 80(5):480-90. PubMed ID: 17717811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Freshwater protected areas can preserve high-performance phenotypes in populations of a popular sportfish.
    Zolderdo AJ; Abrams AEI; Lawrence MJ; Reid CH; Suski CD; Gilmour KM; Cooke SJ
    Conserv Physiol; 2023; 11(1):coad004. PubMed ID: 36937992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Does Angling Technique Selectively Target Fishes Based on Their Behavioural Type?
    Wilson AD; Brownscombe JW; Sullivan B; Jain-Schlaepfer S; Cooke SJ
    PLoS One; 2015; 10(8):e0135848. PubMed ID: 26284779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth and physiological responses in largemouth bass populations to environmental warming: Effects of inhabiting chronically heated environments.
    White DP; Wahl DH
    J Therm Biol; 2020 Feb; 88():102467. PubMed ID: 32125971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A behavioral perspective on fishing-induced evolution.
    Uusi-Heikkilä S; Wolter C; Klefoth T; Arlinghaus R
    Trends Ecol Evol; 2008 Aug; 23(8):419-21. PubMed ID: 18582988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Life-history traits and energetic status in relation to vulnerability to angling in an experimentally selected teleost fish.
    Redpath TD; Cooke SJ; Arlinghaus R; Wahl DH; Philipp DP
    Evol Appl; 2009 Aug; 2(3):312-23. PubMed ID: 25567883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of water temperature and accelerometer-determined fight intensity on physiological stress and reflex impairment of angled largemouth bass.
    Brownscombe JW; Marchand K; Tisshaw K; Fewster V; Groff O; Pichette M; Seed M; Gutowsky LF; Wilson AD; Cooke SJ
    Conserv Physiol; 2014; 2(1):cou057. PubMed ID: 27293678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hematological parameters in largemouth bass (
    Whitehead MC; Vanetten CL; Zheng Y; Lewbart GA
    PeerJ; 2019; 7():e6669. PubMed ID: 30976464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing Fishers' Support of Striped Bass Management Strategies.
    Murphy RD; Scyphers SB; Grabowski JH
    PLoS One; 2015; 10(8):e0136412. PubMed ID: 26305324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Food deprived largemouth bass (Micropterus salmoides) are inactive and stressed, but do not show changes in lure inspections.
    Keiling TD; Suski CD
    Comp Biochem Physiol A Mol Integr Physiol; 2019 Dec; 238():110556. PubMed ID: 31446065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Examining the effects of chronic, lake-wide elevated temperatures on behavioural expression in largemouth bass, Micropterus salmoides.
    White DP; Nannini MA; Wahl DH
    J Fish Biol; 2020 Jul; 97(1):39-50. PubMed ID: 32154914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global diversity and genetic landscape of natural populations and hatchery stocks of largemouth bass micropterus salmoides across American and Asian regions.
    Wang D; Yao H; Li YH; Xu YJ; Ma XF; Wang HP
    Sci Rep; 2019 Nov; 9(1):16697. PubMed ID: 31723171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential Health Risks of Methylmercury Contamination to Largemouth Bass in the Southeastern United States.
    Seymour RD; Drenner RW; Chumchal MM
    Environ Toxicol Chem; 2023 Aug; 42(8):1755-1762. PubMed ID: 37204218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Samuel Wilmot, fish culture, and recreational fisheries in late 19th century Ontario.
    Knight W
    Sci Can; 2007; 30(1):75-90. PubMed ID: 19227681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The value artificial lake ecosystems provide to recreational anglers: Implications for management of biodiversity and outdoor recreation.
    Meyerhoff J; Klefoth T; Arlinghaus R
    J Environ Manage; 2019 Dec; 252():109580. PubMed ID: 31590054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Response of largemouth bass (Micropterus salmoides) from different thermal environments to increased water temperature.
    Mulhollem JJ; Suski CD; Wahl DH
    Fish Physiol Biochem; 2015 Aug; 41(4):833-42. PubMed ID: 25869216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.