These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 26039173)

  • 21. Computer simulation to investigate the FRET application in DNA hybridization systems.
    Liao JM; Wang YT; Chen CL
    Phys Chem Chem Phys; 2011 Jun; 13(21):10364-71. PubMed ID: 21537495
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modest influence of FRET chromophores on the properties of unfolded proteins.
    Zerze GH; Best RB; Mittal J
    Biophys J; 2014 Oct; 107(7):1654-60. PubMed ID: 25296318
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Contribution of fluorophore dynamics and solvation to resonant energy transfer in protein-DNA complexes: a molecular-dynamics study.
    Shoura MJ; Ranatunga RJKU; Harris SA; Nielsen SO; Levene SD
    Biophys J; 2014 Aug; 107(3):700-710. PubMed ID: 25099809
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recent advances in FRET for the study of protein interactions and dynamics.
    Okamoto K; Sako Y
    Curr Opin Struct Biol; 2017 Oct; 46():16-23. PubMed ID: 29800904
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Excited-state annihilation reduces power dependence of single-molecule FRET experiments.
    Nettels D; Haenni D; Maillot S; Gueye M; Barth A; Hirschfeld V; Hübner CG; Léonard J; Schuler B
    Phys Chem Chem Phys; 2015 Dec; 17(48):32304-15. PubMed ID: 26584062
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular dynamics simulation of configurational ensembles compatible with experimental FRET efficiency data through a restraint on instantaneous FRET efficiencies.
    Reif MM; Oostenbrink C
    J Comput Chem; 2014 Dec; 35(32):2319-32. PubMed ID: 25338770
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sequential data assimilation for single-molecule FRET photon-counting data.
    Matsunaga Y; Kidera A; Sugita Y
    J Chem Phys; 2015 Jun; 142(21):214115. PubMed ID: 26049487
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of Brownian motion of fluorescent probes on measuring nanoscale distances by Förster resonance energy transfer.
    Badali D; Gradinaru CC
    J Chem Phys; 2011 Jun; 134(22):225102. PubMed ID: 21682537
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Unfolded protein and peptide dynamics investigated with single-molecule FRET and correlation spectroscopy from picoseconds to seconds.
    Nettels D; Hoffmann A; Schuler B
    J Phys Chem B; 2008 May; 112(19):6137-46. PubMed ID: 18410159
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation by Experimentation and Simulation of a FRET Pair Comprising Fluorescent Nucleobase Analogs in Nucleosomes.
    Hirashima S; Park S; Sugiyama H
    Chemistry; 2023 Apr; 29(24):e202203961. PubMed ID: 36700521
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural exploration and Förster theory modeling for the interpretation of gas-phase FRET measurements: Chromophore-grafted amyloid-β peptides.
    Kulesza A; Daly S; MacAleese L; Antoine R; Dugourd P
    J Chem Phys; 2015 Jul; 143(2):025101. PubMed ID: 26178129
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fluorescence anisotropy imaging microscopy for homo-FRET in living cells.
    Tramier M; Coppey-Moisan M
    Methods Cell Biol; 2008; 85():395-414. PubMed ID: 18155472
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rise-time of FRET-acceptor fluorescence tracks protein folding.
    Lindhoud S; Westphal AH; van Mierlo CP; Visser AJ; Borst JW
    Int J Mol Sci; 2014 Dec; 15(12):23836-50. PubMed ID: 25535076
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intrinsic dynamics in ECFP and Cerulean control fluorescence quantum yield.
    Lelimousin M; Noirclerc-Savoye M; Lazareno-Saez C; Paetzold B; Le Vot S; Chazal R; Macheboeuf P; Field MJ; Bourgeois D; Royant A
    Biochemistry; 2009 Oct; 48(42):10038-46. PubMed ID: 19754158
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantitative comparison between sub-millisecond time resolution single-molecule FRET measurements and 10-second molecular simulations of a biosensor protein.
    Girodat D; Pati AK; Terry DS; Blanchard SC; Sanbonmatsu KY
    PLoS Comput Biol; 2020 Nov; 16(11):e1008293. PubMed ID: 33151943
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gauging the flexibility of fluorescent markers for the interpretation of fluorescence resonance energy transfer.
    Rindermann JJ; Akhtman Y; Richardson J; Brown T; Lagoudakis PG
    J Am Chem Soc; 2011 Jan; 133(2):279-85. PubMed ID: 21155557
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of Fluorophore Attachment on Protein Conformation and Dynamics Studied by spFRET and NMR Spectroscopy.
    Sánchez-Rico C; Voith von Voithenberg L; Warner L; Lamb DC; Sattler M
    Chemistry; 2017 Oct; 23(57):14267-14277. PubMed ID: 28799205
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An atomistic view on carbocyanine photophysics in the realm of RNA.
    Steffen FD; Sigel RK; Börner R
    Phys Chem Chem Phys; 2016 Oct; 18(42):29045-29055. PubMed ID: 27783069
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Advances in quantitative FRET-based methods for studying nucleic acids.
    Preus S; Wilhelmsson LM
    Chembiochem; 2012 Sep; 13(14):1990-2001. PubMed ID: 22936620
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Quantitative Theoretical Framework For Protein-Induced Fluorescence Enhancement-Förster-Type Resonance Energy Transfer (PIFE-FRET).
    Lerner E; Ploetz E; Hohlbein J; Cordes T; Weiss S
    J Phys Chem B; 2016 Jul; 120(26):6401-10. PubMed ID: 27184889
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.