These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Hyperactive Ras/MAPK signaling is critical for tibial nonunion fracture in neurofibromin-deficient mice. Sharma R; Wu X; Rhodes SD; Chen S; He Y; Yuan J; Li J; Yang X; Li X; Jiang L; Kim ET; Stevenson DA; Viskochil D; Xu M; Yang FC Hum Mol Genet; 2013 Dec; 22(23):4818-28. PubMed ID: 23863460 [TBL] [Abstract][Full Text] [Related]
4. Neurofibromin-deficient Schwann cells have increased lysophosphatidic acid dependent survival and migration-implications for increased neurofibroma formation during pregnancy. Nebesio TD; Ming W; Chen S; Clegg T; Yuan J; Yang Y; Estwick SA; Li Y; Li X; Hingtgen CM; Yang FC Glia; 2007 Apr; 55(5):527-36. PubMed ID: 17236191 [TBL] [Abstract][Full Text] [Related]
5. Hyperactivation of p21ras and PI3K cooperate to alter murine and human neurofibromatosis type 1-haploinsufficient osteoclast functions. Yang FC; Chen S; Robling AG; Yu X; Nebesio TD; Yan J; Morgan T; Li X; Yuan J; Hock J; Ingram DA; Clapp DW J Clin Invest; 2006 Nov; 116(11):2880-91. PubMed ID: 17053831 [TBL] [Abstract][Full Text] [Related]
6. Hyperactivation of p21(ras) and the hematopoietic-specific Rho GTPase, Rac2, cooperate to alter the proliferation of neurofibromin-deficient mast cells in vivo and in vitro. Ingram DA; Hiatt K; King AJ; Fisher L; Shivakumar R; Derstine C; Wenning MJ; Diaz B; Travers JB; Hood A; Marshall M; Williams DA; Clapp DW J Exp Med; 2001 Jul; 194(1):57-69. PubMed ID: 11435472 [TBL] [Abstract][Full Text] [Related]
7. Role of TC21/R-Ras2 in enhanced migration of neurofibromin-deficient Schwann cells. Huang Y; Rangwala F; Fulkerson PC; Ling B; Reed E; Cox AD; Kamholz J; Ratner N Oncogene; 2004 Jan; 23(2):368-78. PubMed ID: 14724565 [TBL] [Abstract][Full Text] [Related]
8. Ras dependent paracrine secretion of osteopontin by Nf1+/- osteoblasts promote osteoclast activation in a neurofibromatosis type I murine model. Li H; Liu Y; Zhang Q; Jing Y; Chen S; Song Z; Yan J; Li Y; Wu X; Zhang X; Zhang Y; Case J; Yu M; Ingram DA; Yang FC Pediatr Res; 2009 Jun; 65(6):613-8. PubMed ID: 19247213 [TBL] [Abstract][Full Text] [Related]
9. MEK inhibition exhibits efficacy in human and mouse neurofibromatosis tumors. Jessen WJ; Miller SJ; Jousma E; Wu J; Rizvi TA; Brundage ME; Eaves D; Widemann B; Kim MO; Dombi E; Sabo J; Hardiman Dudley A; Niwa-Kawakita M; Page GP; Giovannini M; Aronow BJ; Cripe TP; Ratner N J Clin Invest; 2013 Jan; 123(1):340-7. PubMed ID: 23221341 [TBL] [Abstract][Full Text] [Related]
10. Developmental dosing with a MEK inhibitor (PD0325901) rescues myopathic features of the muscle-specific but not limb-specific Nf1 knockout mouse. Summers MA; Vasiljevski ER; Mikulec K; Peacock L; Little DG; Schindeler A Mol Genet Metab; 2018 Apr; 123(4):518-525. PubMed ID: 29477258 [TBL] [Abstract][Full Text] [Related]
11. Hyperactive transforming growth factor-β1 signaling potentiates skeletal defects in a neurofibromatosis type 1 mouse model. Rhodes SD; Wu X; He Y; Chen S; Yang H; Staser KW; Wang J; Zhang P; Jiang C; Yokota H; Dong R; Peng X; Yang X; Murthy S; Azhar M; Mohammad KS; Xu M; Guise TA; Yang FC J Bone Miner Res; 2013 Dec; 28(12):2476-89. PubMed ID: 23703870 [TBL] [Abstract][Full Text] [Related]
12. Neurofibromatosis Type 1 and tumorigenesis: molecular mechanisms and therapeutic implications. Gottfried ON; Viskochil DH; Couldwell WT Neurosurg Focus; 2010 Jan; 28(1):E8. PubMed ID: 20043723 [TBL] [Abstract][Full Text] [Related]
13. Neurofibromin plays a critical role in modulating osteoblast differentiation of mesenchymal stem/progenitor cells. Wu X; Estwick SA; Chen S; Yu M; Ming W; Nebesio TD; Li Y; Yuan J; Kapur R; Ingram D; Yoder MC; Yang FC Hum Mol Genet; 2006 Oct; 15(19):2837-45. PubMed ID: 16893911 [TBL] [Abstract][Full Text] [Related]
14. NF1 deletion generates multiple subtypes of soft-tissue sarcoma that respond to MEK inhibition. Dodd RD; Mito JK; Eward WC; Chitalia R; Sachdeva M; Ma Y; Barretina J; Dodd L; Kirsch DG Mol Cancer Ther; 2013 Sep; 12(9):1906-17. PubMed ID: 23858101 [TBL] [Abstract][Full Text] [Related]
15. NF1 regulates a Ras-dependent vascular smooth muscle proliferative injury response. Xu J; Ismat FA; Wang T; Yang J; Epstein JA Circulation; 2007 Nov; 116(19):2148-56. PubMed ID: 17967772 [TBL] [Abstract][Full Text] [Related]
16. Rac1 mediates the osteoclast gains-in-function induced by haploinsufficiency of Nf1. Yan J; Chen S; Zhang Y; Li X; Li Y; Wu X; Yuan J; Robling AG; Kapur R; Chan RJ; Yang FC Hum Mol Genet; 2008 Apr; 17(7):936-48. PubMed ID: 18089636 [TBL] [Abstract][Full Text] [Related]
17. c-Fms signaling mediates neurofibromatosis Type-1 osteoclast gain-in-functions. He Y; Rhodes SD; Chen S; Wu X; Yuan J; Yang X; Jiang L; Li X; Takahashi N; Xu M; Mohammad KS; Guise TA; Yang FC PLoS One; 2012; 7(11):e46900. PubMed ID: 23144792 [TBL] [Abstract][Full Text] [Related]
18. Role of phosphoinositide 3-kinase and endocytosis in nerve growth factor-induced extracellular signal-regulated kinase activation via Ras and Rap1. York RD; Molliver DC; Grewal SS; Stenberg PE; McCleskey EW; Stork PJ Mol Cell Biol; 2000 Nov; 20(21):8069-83. PubMed ID: 11027277 [TBL] [Abstract][Full Text] [Related]
19. Nf1-/- Schwann cell-conditioned medium modulates mast cell degranulation by c-Kit-mediated hyperactivation of phosphatidylinositol 3-kinase. Chen S; Burgin S; McDaniel A; Li X; Yuan J; Chen M; Khalaf W; Clapp DW; Yang FC Am J Pathol; 2010 Dec; 177(6):3125-32. PubMed ID: 21037083 [TBL] [Abstract][Full Text] [Related]
20. Ras-Mek-Erk signaling regulates Nf1 heterozygous neointima formation. Stansfield BK; Bessler WK; Mali R; Mund JA; Downing BD; Kapur R; Ingram DA Am J Pathol; 2014 Jan; 184(1):79-85. PubMed ID: 24211110 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]