BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 26039466)

  • 1. Overexpressing CAPRICE and GLABRA3 did not change the anthocyanin content of tomato (Solanum lycopersicum) fruit peel.
    Wada T; Onishi M; Kunihiro A; Tominaga-Wada R
    Plant Signal Behav; 2015; 10(5):e1000131. PubMed ID: 26039466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arabidopsis CAPRICE (MYB) and GLABRA3 (bHLH) control tomato (Solanum lycopersicum) anthocyanin biosynthesis.
    Wada T; Kunihiro A; Tominaga-Wada R
    PLoS One; 2014; 9(9):e109093. PubMed ID: 25268379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tomato (Solanum lycopersicum) homologs of TRIPTYCHON (SlTRY) and GLABRA3 (SlGL3) are involved in anthocyanin accumulation.
    Nukumizu Y; Wada T; Tominaga-Wada R
    Plant Signal Behav; 2013 Jul; 8(7):e24575. PubMed ID: 23603939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of plant trichome and root-hair development by a tomato (Solanum lycopersicum) R3 MYB transcription factor.
    Tominaga-Wada R; Nukumizu Y; Sato S; Wada T
    PLoS One; 2013; 8(1):e54019. PubMed ID: 23326563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CPC, a single-repeat R3 MYB, is a negative regulator of anthocyanin biosynthesis in Arabidopsis.
    Zhu HF; Fitzsimmons K; Khandelwal A; Kranz RG
    Mol Plant; 2009 Jul; 2(4):790-802. PubMed ID: 19825656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of phosphate deficiency-induced anthocyanin accumulation on the expression of Solanum lycopersicum GLABRA3 (SlGL3) in tomato.
    Tominaga-Wada R; Masakane A; Wada T
    Plant Signal Behav; 2018; 13(6):e1477907. PubMed ID: 29944442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Jasmonate-ZIM-domain proteins interact with the WD-Repeat/bHLH/MYB complexes to regulate Jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana.
    Qi T; Song S; Ren Q; Wu D; Huang H; Chen Y; Fan M; Peng W; Ren C; Xie D
    Plant Cell; 2011 May; 23(5):1795-814. PubMed ID: 21551388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional analysis of the epidermal-specific MYB genes CAPRICE and WEREWOLF in Arabidopsis.
    Tominaga R; Iwata M; Okada K; Wada T
    Plant Cell; 2007 Jul; 19(7):2264-77. PubMed ID: 17644729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide identification of GLABRA3 downstream genes for anthocyanin biosynthesis and trichome formation in Arabidopsis.
    Gao C; Li D; Jin C; Duan S; Qi S; Liu K; Wang H; Ma H; Hai J; Chen M
    Biochem Biophys Res Commun; 2017 Apr; 485(2):360-365. PubMed ID: 28216162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TRANSPARENT TESTA GLABRA1 and GLABRA1 Compete for Binding to GLABRA3 in Arabidopsis.
    Pesch M; Schultheiß I; Klopffleisch K; Uhrig JF; Koegl M; Clemen CS; Simon R; Weidtkamp-Peters S; Hülskamp M
    Plant Physiol; 2015 Jun; 168(2):584-97. PubMed ID: 25926482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of interactions between heterologously produced bHLH and MYB proteins that regulate anthocyanin biosynthesis: quantitative interaction kinetics by Microscale Thermophoresis.
    Nemie-Feyissa D; Heidari B; Blaise M; Lillo C
    Phytochemistry; 2015 Mar; 111():21-6. PubMed ID: 25659750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SlMYB7, an AtMYB4-Like R2R3-MYB Transcription Factor, Inhibits Anthocyanin Accumulation in
    Zhang L; Duan Z; Ma S; Sun S; Sun M; Xiao Y; Ni N; Irfan M; Chen L; Sun Y
    J Agric Food Chem; 2023 Dec; 71(48):18758-18768. PubMed ID: 38012529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings.
    Gonzalez A; Zhao M; Leavitt JM; Lloyd AM
    Plant J; 2008 Mar; 53(5):814-27. PubMed ID: 18036197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comprehensive analysis of single-repeat R3 MYB proteins in epidermal cell patterning and their transcriptional regulation in Arabidopsis.
    Wang S; Hubbard L; Chang Y; Guo J; Schiefelbein J; Chen JG
    BMC Plant Biol; 2008 Jul; 8():81. PubMed ID: 18644155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Localization of tomato (
    Nagao K; Tominaga R
    Plant Signal Behav; 2020 Oct; 15(10):1800198. PubMed ID: 32741241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The bHLH genes GLABRA3 (GL3) and ENHANCER OF GLABRA3 (EGL3) specify epidermal cell fate in the Arabidopsis root.
    Bernhardt C; Lee MM; Gonzalez A; Zhang F; Lloyd A; Schiefelbein J
    Development; 2003 Dec; 130(26):6431-9. PubMed ID: 14627722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of root hair cell differentiation by R3 MYB transcription factors in tomato and Arabidopsis.
    Tominaga-Wada R; Wada T
    Front Plant Sci; 2014; 5():91. PubMed ID: 24659995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The TTG1-bHLH-MYB complex controls trichome cell fate and patterning through direct targeting of regulatory loci.
    Zhao M; Morohashi K; Hatlestad G; Grotewold E; Lloyd A
    Development; 2008 Jun; 135(11):1991-9. PubMed ID: 18434419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression and protein localization analyses of
    Tominaga-Wada R; Ota K; Hayashi N; Yamada K; Sano R; Wada T
    Plant Biotechnol (Tokyo); 2017; 34(2):115-117. PubMed ID: 31275016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alternative Splicing in the
    Colanero S; Tagliani A; Perata P; Gonzali S
    Plant Commun; 2020 Jan; 1(1):100006. PubMed ID: 33404542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.