These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 26039493)

  • 1. Generating Electricity during Walking with a Lower Limb-Driven Energy Harvester: Targeting a Minimum User Effort.
    Shepertycky M; Li Q
    PLoS One; 2015; 10(6):e0127635. PubMed ID: 26039493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical energy harvesting: generating electricity during walking with minimal user effort.
    Donelan JM; Li Q; Naing V; Hoffer JA; Weber DJ; Kuo AD
    Science; 2008 Feb; 319(5864):807-10. PubMed ID: 18258914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a biomechanical energy harvester.
    Li Q; Naing V; Donelan JM
    J Neuroeng Rehabil; 2009 Jun; 6():22. PubMed ID: 19549313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overground vs. treadmill walking on biomechanical energy harvesting: An energetics and EMG study.
    Martin JP; Li Q
    Gait Posture; 2017 Feb; 52():124-128. PubMed ID: 27912153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lower-limb-driven energy harvesting: preliminary analysis.
    Zhang JT; Li Q
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4511-4. PubMed ID: 22255341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanical energy harvesting from human motion: theory, state of the art, design guidelines, and future directions.
    Riemer R; Shapiro A
    J Neuroeng Rehabil; 2011 Apr; 8():22. PubMed ID: 21521509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical knee energy harvester: Design optimization and testing.
    Gad M; Lev-Ari B; Shapiro A; Ben-David C; Riemer R
    Front Robot AI; 2022; 9():998248. PubMed ID: 36274915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Muscle force production during bent-knee, bent-hip walking in humans.
    Foster AD; Raichlen DA; Pontzer H
    J Hum Evol; 2013 Sep; 65(3):294-302. PubMed ID: 23928351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of lower extremity joint powers in successful stair ambulation.
    Wilken JM; Sinitski EH; Bagg EA
    Gait Posture; 2011 May; 34(1):142-4. PubMed ID: 21482112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of load carriage and muscle fatigue on lower-extremity joint mechanics.
    Wang H; Frame J; Ozimek E; Leib D; Dugan EL
    Res Q Exerc Sport; 2013 Sep; 84(3):305-12. PubMed ID: 24261009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Longitudinal kinematic and kinetic adaptations to obstacle crossing in recent lower limb amputees.
    Barnett CT; Polman RC; Vanicek N
    Prosthet Orthot Int; 2014 Dec; 38(6):437-46. PubMed ID: 24150931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of age on lower extremity joint kinematics and kinetics during level walking with Masai barefoot technology shoes.
    Buchecker M; Lindinger S; Pfusterschmied J; Müller E
    Eur J Phys Rehabil Med; 2013 Oct; 49(5):675-86. PubMed ID: 23792632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lower limb joint kinetics in walking: the role of industry recommended footwear.
    Keenan GS; Franz JR; Dicharry J; Della Croce U; Kerrigan DC
    Gait Posture; 2011 Mar; 33(3):350-5. PubMed ID: 21251835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gait evaluation of new powered knee-ankle-foot orthosis in able-bodied persons: a pilot study.
    Arazpour M; Ahmadi F; Bani MA; Hutchins SW; Bahramizadeh M; Ghomshe FT; Kashani RV
    Prosthet Orthot Int; 2014 Feb; 38(1):39-45. PubMed ID: 23660383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stair ascent kinematics and kinetics with a powered lower leg system following transtibial amputation.
    Aldridge JM; Sturdy JT; Wilken JM
    Gait Posture; 2012 Jun; 36(2):291-5. PubMed ID: 22571821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy Harvesting from Upper-Limb Pulling Motions for Miniaturized Human-Powered Generators.
    Yeo J; Ryu MH; Yang Y
    Sensors (Basel); 2015 Jul; 15(7):15853-67. PubMed ID: 26151204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of lower limb internal kinetics and electromyography in elite race walking.
    Hanley B; Bissas A
    J Sports Sci; 2013; 31(11):1222-32. PubMed ID: 23464365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of enhanced piezoelectric energy harvester induced by human motion.
    Minami Y; Nakamachi E
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1627-30. PubMed ID: 23366218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of an energy harvesting backpack and performance evaluation.
    Shepertycky M; Zhang JT; Liu YF; Li Q
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650409. PubMed ID: 24187228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.