BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 2603965)

  • 1. Sodium chloride and water transport in the thin descending limb of Henle of the quail.
    Nishimura H; Koseki C; Imai M; Braun EJ
    Am J Physiol; 1989 Dec; 257(6 Pt 2):F994-1002. PubMed ID: 2603965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sodium chloride and water transport in the medullary thick ascending limb of Henle. Evidence for active chloride transport.
    Rocha AS; Kokko JP
    J Clin Invest; 1973 Mar; 52(3):612-23. PubMed ID: 4685086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diluting segment in avian kidney. II. Water and chloride transport.
    Miwa T; Nishimura H
    Am J Physiol; 1986 Mar; 250(3 Pt 2):R341-7. PubMed ID: 3953846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Renal handling of sodium chloride and its control in birds.
    Nishimura H; Miwa T; Bailey JR
    J Exp Zool; 1984 Dec; 232(3):697-705. PubMed ID: 6394706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of sodium and chloride transport in the thick ascending limb in the avian nephron.
    Osono E; Nishimura H
    Am J Physiol; 1994 Aug; 267(2 Pt 2):R455-62. PubMed ID: 8067454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An optimization algorithm for a distributed-loop model of an avian urine concentrating mechanism.
    Marcano M; Layton AT; Layton HE
    Bull Math Biol; 2006 Oct; 68(7):1625-60. PubMed ID: 16967257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Urine-concentrating mechanism in the inner medulla: function of the thin limbs of the loops of Henle.
    Dantzler WH; Layton AT; Layton HE; Pannabecker TL
    Clin J Am Soc Nephrol; 2014 Oct; 9(10):1781-9. PubMed ID: 23908457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water transport in collecting ducts of Japanese quail.
    Nishimura H; Koseki C; Patel TB
    Am J Physiol; 1996 Dec; 271(6 Pt 2):R1535-43. PubMed ID: 8997350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Countercurrent multiplication may not explain the axial osmolality gradient in the outer medulla of the rat kidney.
    Layton AT; Layton HE
    Am J Physiol Renal Physiol; 2011 Nov; 301(5):F1047-56. PubMed ID: 21753076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of NaCl transport in the thick ascending limb.
    Hebert SC; Andreoli TE
    Am J Physiol; 1984 Jun; 246(6 Pt 2):F745-56. PubMed ID: 6377912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mathematical model of an avian urine concentrating mechanism.
    Layton HE; Davies JM; Casotti G; Braun EJ
    Am J Physiol Renal Physiol; 2000 Dec; 279(6):F1139-60. PubMed ID: 11097634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diluting segment in avian kidney. I. Characterization of transepithelial voltages.
    Nishimura H; Imai M; Ogawa M
    Am J Physiol; 1986 Mar; 250(3 Pt 2):R333-40. PubMed ID: 3953845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distributed solute and water reabsorption in a central core model of the renal medulla.
    Layton HE; Davies JM
    Math Biosci; 1993 Aug; 116(2):169-96. PubMed ID: 8369598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Site and mechanism of action of diuretics.
    Kokko JP
    Am J Med; 1984 Nov; 77(5A):11-7. PubMed ID: 6496555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. "Avian-type" renal medullary tubule organization causes immaturity of urine-concentrating ability in neonates.
    Liu W; Morimoto T; Kondo Y; Iinuma K; Uchida S; Imai M
    Kidney Int; 2001 Aug; 60(2):680-93. PubMed ID: 11473651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NaCl transport in mouse medullary thick ascending limbs. I. Functional nephron heterogeneity and ADH-stimulated NaCl cotransport.
    Hebert SC; Culpepper RM; Andreoli TE
    Am J Physiol; 1981 Oct; 241(4):F412-31. PubMed ID: 7315965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of the profile of water, NaCl, and urea transport in the countercurrent multiplication system between thin ascending limb and inner medullary collecting duct.
    Hamada Y; Imai M; Aoki T; Suzuki R; Kamiya A
    Tohoku J Exp Med; 1992 Sep; 168(1):47-62. PubMed ID: 1488758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural-functional correlation in chinchilla long loop of Henle thin limbs: a novel papillary subsegment.
    Chou CL; Nielsen S; Knepper MA
    Am J Physiol; 1993 Dec; 265(6 Pt 2):F863-74. PubMed ID: 7506872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of varying salt and urea permeabilities along descending limbs of Henle in a model of the renal medullary urine concentrating mechanism.
    Thomas SR
    Bull Math Biol; 1991; 53(6):825-43. PubMed ID: 1958893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Function of the thin ascending limb of Henle of rats and hamsters perfused in vitro.
    Imai M
    Am J Physiol; 1977 Mar; 232(3):F201-9. PubMed ID: 842667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.