BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 26039871)

  • 1. Synthesis and Enantioseparation Ability of Xylan Bisphenylcarbamate Derivatives as Chiral Stationary Phases in HPLC.
    Li G; Shen J; Li Q; Okamoto Y
    Chirality; 2015 Aug; 27(8):518-22. PubMed ID: 26039871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and chiral recognition of amylose derivatives bearing regioselective phenylcarbamate substituents at 2,6- and 3-positions for high-performance liquid chromatography.
    Shen J; Li G; Yang Z; Okamoto Y
    J Chromatogr A; 2016 Oct; 1467():199-205. PubMed ID: 27452988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of cellulose carbamates bearing regioselective substituents at 2,3- and 6-positions for efficient chromatographic enantioseparation.
    Shen J; Wang F; Bi W; Liu B; Liu S; Okamoto Y
    J Chromatogr A; 2018 Oct; 1572():54-61. PubMed ID: 30146373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enantioseparation using ortho- or meta-substituted phenylcarbamates of amylose as chiral stationary phases for high-performance liquid chromatography.
    Shen J; Zhao Y; Inagaki S; Yamamoto C; Shen Y; Liu S; Okamoto Y
    J Chromatogr A; 2013 Apr; 1286():41-6. PubMed ID: 23506702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and HPLC chiral recognition of regioselectively carbamoylated cellulose derivatives.
    Tang S; Li X; Wang F; Liu G; Li Y; Pan F
    Chirality; 2012 Feb; 24(2):167-73. PubMed ID: 22213581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of chitosan 3,6-diphenylcarbamate-2-urea derivatives and their applications as chiral stationary phases for high-performance liquid chromatography.
    Zhang L; Shen J; Zuo W; Okamoto Y
    J Chromatogr A; 2014 Oct; 1365():86-93. PubMed ID: 25262030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chiral recognition ability of amylose derivatives bearing regioselectively different carbamate pendants at 2,3- and 6-positions.
    Dai X; Bi W; Sun M; Wang F; Shen J; Okamoto Y
    Carbohydr Polym; 2019 Aug; 218():30-36. PubMed ID: 31221334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enantioseparation using urea- and imide-bearing chitosan phenylcarbamate derivatives as chiral stationary phases for high-performance liquid chromatography.
    Yamamoto C; Fujisawa M; Kamigaito M; Okamoto Y
    Chirality; 2008 Mar; 20(3-4):288-94. PubMed ID: 17597117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chiral stationary phases based on chitosan bis(methylphenylcarbamate)-(isobutyrylamide) for high-performance liquid chromatography.
    Tang S; Bin Q; Chen W; Bai ZW; Huang SH
    J Chromatogr A; 2016 Apr; 1440():112-122. PubMed ID: 26931425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of substituted phenylcarbamates of N-cyclobutylformylated chitosan and their application as chiral selectors in enantioseparation.
    Zhang J; Wang XC; Chen W; Bai ZW
    Analyst; 2016 Jul; 141(14):4470-80. PubMed ID: 27191623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HPLC with cellulose Tris (3,5-DimethylPhenylcarbamate) chiral stationary phase: Influence of coating times and coating amount on chiral discrimination.
    Wei Q; Su H; Gao D; Wang S
    Chirality; 2019 Mar; 31(3):164-173. PubMed ID: 30633381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and evaluation of regioselectively substituted amylose derivatives for chiral separations.
    Tang S; Jin Z; Sun B; Wang F; Tang W
    Chirality; 2017 Sep; 29(9):512-521. PubMed ID: 28635058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and chiral recognition of novel amylose derivatives containing regioselectively benzoate and phenylcarbamate groups.
    Shen J; Ikai T; Okamoto Y
    J Chromatogr A; 2010 Feb; 1217(7):1041-7. PubMed ID: 19647833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Preparation and evaluation of amylose and cellulose tris (3-trifluoromethylphenylcarbamates)-based chiral stationary phases].
    Jin Z; Hu F; Wang Y; Liu G; Wang F; Pan F; Tang S
    Se Pu; 2011 Nov; 29(11):1087-92. PubMed ID: 22393696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enantioseparation on Riboflavin Derivatives Chemically Bonded to Silica Gel as Chiral Stationary Phases for HPLC.
    Kumano D; Iwahana S; Iida H; Shen C; Crassous J; Yashima E
    Chirality; 2015 Aug; 27(8):507-17. PubMed ID: 25919938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enantioseparation properties of (1-->6)-alpha-D-glucopyranan and (1-->6)-alpha-D-mannopyranan tris(phenylcarbamate)s as chiral stationary phases in HPLC.
    Kusuno A; Mori M; Satoh T; Miura M; Kaga H; Kakuchi T
    Chirality; 2002 Jun; 14(6):498-502. PubMed ID: 12112345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enantioseparation and molecular modeling study of chiral amines as three naphthaldimine derivatives using amylose or cellulose trisphenylcarbamate chiral stationary phases.
    Adhikari S; Bhujbal S; Paik MJ; Lee W
    Chirality; 2023 Jan; 35(1):29-39. PubMed ID: 36323631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reversed-phase chiral HPLC and LC/MS analysis with tris(chloromethylphenylcarbamate) derivatives of cellulose and amylose as chiral stationary phases.
    Peng L; Jayapalan S; Chankvetadze B; Farkas T
    J Chromatogr A; 2010 Oct; 1217(44):6942-55. PubMed ID: 20863505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Preparation and chiral recognition of heterosubstituted amylose derivatives-based chiral stationary phases].
    Wang B; Bao M; Lin S; Ma J; Tang S
    Se Pu; 2017 Jun; 35(6):572-577. PubMed ID: 29048782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved preparation of chiral stationary phases via immobilization of polysaccharide derivative-based selectors using diisocyanates.
    Tang S; Liu G; Li X; Jin Z; Wang F; Pan F; Okamoto Y
    J Sep Sci; 2011 Aug; 34(15):1763-71. PubMed ID: 21688393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.