BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 26039892)

  • 1. Microfluidic Generation of Monodisperse, Structurally Homogeneous Alginate Microgels for Cell Encapsulation and 3D Cell Culture.
    Utech S; Prodanovic R; Mao AS; Ostafe R; Mooney DJ; Weitz DA
    Adv Healthc Mater; 2015 Aug; 4(11):1628-33. PubMed ID: 26039892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatic Crosslinking of Polymer Conjugates is Superior over Ionic or UV Crosslinking for the On-Chip Production of Cell-Laden Microgels.
    Henke S; Leijten J; Kemna E; Neubauer M; Fery A; van den Berg A; van Apeldoorn A; Karperien M
    Macromol Biosci; 2016 Oct; 16(10):1524-1532. PubMed ID: 27440382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic one-step fabrication of radiopaque alginate microgels with in situ synthesized barium sulfate nanoparticles.
    Wang Q; Zhang D; Xu H; Yang X; Shen AQ; Yang Y
    Lab Chip; 2012 Nov; 12(22):4781-6. PubMed ID: 22992786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controllable generation and encapsulation of alginate fibers using droplet-based microfluidics.
    Martino C; Statzer C; Vigolo D; deMello AJ
    Lab Chip; 2016 Jan; 16(1):59-64. PubMed ID: 26556398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manipulating the generation of Ca-alginate microspheres using microfluidic channels as a carrier of gold nanoparticles.
    Huang KS; Lai TH; Lin YC
    Lab Chip; 2006 Jul; 6(7):954-7. PubMed ID: 16804602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Digital electrophoresis of charged droplets.
    Im DJ; Yoo BS; Ahn MM; Moon D; Kang IS
    Anal Chem; 2013 Apr; 85(8):4038-44. PubMed ID: 23489042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shape-controlled production of biodegradable calcium alginate gel microparticles using a novel microfluidic device.
    Liu K; Ding HJ; Liu J; Chen Y; Zhao XZ
    Langmuir; 2006 Oct; 22(22):9453-7. PubMed ID: 17042568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using a microfluidic chip and internal gelation reaction for monodisperse calcium alginate microparticles generation.
    Huang KS; Lai TH; Lin YC
    Front Biosci; 2007 May; 12():3061-7. PubMed ID: 17485282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic synthesis of tail-shaped alginate microparticles using slow sedimentation.
    Lin YS; Yang CH; Hsu YY; Hsieh CL
    Electrophoresis; 2013 Feb; 34(3):425-31. PubMed ID: 23161405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic Production of Alginate Hydrogel Particles for Antibody Encapsulation and Release.
    Mazutis L; Vasiliauskas R; Weitz DA
    Macromol Biosci; 2015 Dec; 15(12):1641-6. PubMed ID: 26198619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of monodisperse calcium alginate microcapsules via internal gelation in microfluidic-generated double emulsions.
    Liu L; Wu F; Ju XJ; Xie R; Wang W; Niu CH; Chu LY
    J Colloid Interface Sci; 2013 Aug; 404():85-90. PubMed ID: 23711658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monodisperse alginate microcapsules with oil core generated from a microfluidic device.
    Ren PW; Ju XJ; Xie R; Chu LY
    J Colloid Interface Sci; 2010 Mar; 343(1):392-5. PubMed ID: 19963224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A microfluidic approach to encapsulate living cells in uniform alginate hydrogel microparticles.
    Martinez CJ; Kim JW; Ye C; Ortiz I; Rowat AC; Marquez M; Weitz D
    Macromol Biosci; 2012 Jul; 12(7):946-51. PubMed ID: 22311460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optically clear alginate hydrogels for spatially controlled cell entrapment and culture at microfluidic electrode surfaces.
    Betz JF; Cheng Y; Tsao CY; Zargar A; Wu HC; Luo X; Payne GF; Bentley WE; Rubloff GW
    Lab Chip; 2013 May; 13(10):1854-8. PubMed ID: 23559159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication and characterization of monodisperse PLGA-alginate core-shell microspheres with monodisperse size and homogeneous shells for controlled drug release.
    Wu J; Kong T; Yeung KW; Shum HC; Cheung KM; Wang L; To MK
    Acta Biomater; 2013 Jul; 9(7):7410-9. PubMed ID: 23535235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biocompatible multi-address 3D cell assembly in microfluidic devices using spatially programmable gel formation.
    Cheng Y; Luo X; Tsao CY; Wu HC; Betz J; Payne GF; Bentley WE; Rubloff GW
    Lab Chip; 2011 Jul; 11(14):2316-8. PubMed ID: 21629950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of process variables on the encapsulation of oil in ca-alginate capsules using an inverse gelation technique.
    Abang S; Chan ES; Poncelet D
    J Microencapsul; 2012; 29(5):417-28. PubMed ID: 22292966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic encapsulation of nanoparticles in alginate microgels gelled via competitive ligand exchange crosslinking.
    Cinel VDP; Taketa TB; de Carvalho BG; de la Torre LG; de Mello LR; da Silva ER; Han SW
    Biopolymers; 2021 Jul; 112(7):e23432. PubMed ID: 33982812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. "On the fly" continuous generation of alginate fibers using a microfluidic device.
    Shin SJ; Park JY; Lee JY; Park H; Park YD; Lee KB; Whang CM; Lee SH
    Langmuir; 2007 Aug; 23(17):9104-8. PubMed ID: 17637008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Patterning alginate hydrogels using light-directed release of caged calcium in a microfluidic device.
    Chueh BH; Zheng Y; Torisawa YS; Hsiao AY; Ge C; Hsiong S; Huebsch N; Franceschi R; Mooney DJ; Takayama S
    Biomed Microdevices; 2010 Feb; 12(1):145-51. PubMed ID: 19830565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.