These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 26039893)

  • 1. Strong Acoustic Phonon Localization in Copolymer-Wrapped Carbon Nanotubes.
    Sarpkaya I; Ahmadi ED; Shepard GD; Mistry KS; Blackburn JL; Strauf S
    ACS Nano; 2015 Jun; 9(6):6383-93. PubMed ID: 26039893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suppression of exciton dephasing in sidewall-functionalized carbon nanotubes embedded into metallo-dielectric antennas.
    Shayan K; He X; Luo Y; Rabut C; Li X; Hartmann NF; Blackburn JL; Doorn SK; Htoon H; Strauf S
    Nanoscale; 2018 Jul; 10(26):12631-12638. PubMed ID: 29943788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pure optical dephasing dynamics in semiconducting single-walled carbon nanotubes.
    Graham MW; Ma YZ; Green AA; Hersam MC; Fleming GR
    J Chem Phys; 2011 Jan; 134(3):034504. PubMed ID: 21261365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phonon-induced dephasing of excitons in semiconductor quantum dots: multiple exciton generation, fission, and luminescence.
    Madrid AB; Hyeon-Deuk K; Habenicht BF; Prezhdo OV
    ACS Nano; 2009 Sep; 3(9):2487-94. PubMed ID: 19722505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ligands Slow Down Pure-Dephasing in Semiconductor Quantum Dots.
    Liu J; Kilina SV; Tretiak S; Prezhdo OV
    ACS Nano; 2015 Sep; 9(9):9106-16. PubMed ID: 26284384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unifying the low-temperature photoluminescence spectra of carbon nanotubes: the role of acoustic phonon confinement.
    Vialla F; Chassagneux Y; Ferreira R; Roquelet C; Diederichs C; Cassabois G; Roussignol P; Lauret JS; Voisin C
    Phys Rev Lett; 2014 Aug; 113(5):057402. PubMed ID: 25126935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-markovian decoherence of localized nanotube excitons by acoustic phonons.
    Galland C; Högele A; Türeci HE; Imamoğlu A
    Phys Rev Lett; 2008 Aug; 101(6):067402. PubMed ID: 18764501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy of K-momentum dark excitons in carbon nanotubes by optical spectroscopy.
    Torrens ON; Zheng M; Kikkawa JM
    Phys Rev Lett; 2008 Oct; 101(15):157401. PubMed ID: 18999637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exciton-Phonon Spectroscopy of Quantum Dots Below the Single-Particle Homogeneous Line Width.
    Spencer AP; Hutson WO; Irgen-Gioro S; Harel E
    J Phys Chem Lett; 2018 Apr; 9(7):1503-1508. PubMed ID: 29510628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spin-flip limited exciton dephasing in CdSe/ZnS colloidal quantum dots.
    Masia F; Accanto N; Langbein W; Borri P
    Phys Rev Lett; 2012 Feb; 108(8):087401. PubMed ID: 22463568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonmagnetic Quantum Emitters in Boron Nitride with Ultranarrow and Sideband-Free Emission Spectra.
    Li X; Shepard GD; Cupo A; Camporeale N; Shayan K; Luo Y; Meunier V; Strauf S
    ACS Nano; 2017 Jul; 11(7):6652-6660. PubMed ID: 28521091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phonon-induced pure-dephasing of luminescence, multiple exciton generation, and fission in silicon clusters.
    Liu J; Neukirch AJ; Prezhdo OV
    J Chem Phys; 2013 Oct; 139(16):164303. PubMed ID: 24182025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bright, long-lived and coherent excitons in carbon nanotube quantum dots.
    Hofmann MS; Glückert JT; Noé J; Bourjau C; Dehmel R; Högele A
    Nat Nanotechnol; 2013 Jul; 8(7):502-5. PubMed ID: 23812185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phonon anharmonicity-induced decoherence slowing down in exciton-phonon systems.
    Pouthier V
    J Phys Condens Matter; 2010 Jun; 22(25):255601. PubMed ID: 21393804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exciton Dephasing by Phonon-Induced Scattering between Bright Exciton States in InP/ZnSe Colloidal Quantum Dots.
    Chandrasekaran V; Scarpelli L; Masia F; Borri P; Langbein W; Hens Z
    ACS Nano; 2023 Jul; 17(13):12118-12126. PubMed ID: 37326256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of exciton-phonon coupling in the calculated optical absorption of carbon nanotubes.
    Perebeinos V; Tersoff J; Avouris P
    Phys Rev Lett; 2005 Jan; 94(2):027402. PubMed ID: 15698227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Confirmation of K-momentum dark exciton vibronic sidebands using 13C-labeled, highly enriched (6,5) single-walled carbon nanotubes.
    Blackburn JL; Holt JM; Irurzun VM; Resasco DE; Rumbles G
    Nano Lett; 2012 Mar; 12(3):1398-403. PubMed ID: 22313425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering the Impact of Phonon Dephasing on the Coherence of a WSe_{2} Single-Photon Source via Cavity Quantum Electrodynamics.
    Mitryakhin VN; Steinhoff A; Drawer JC; Shan H; Florian M; Lackner L; Han B; Eilenberger F; Tongay SA; Watanabe K; Taniguchi T; Antón-Solanas C; Predojević A; Gies C; Esmann M; Schneider C
    Phys Rev Lett; 2024 May; 132(20):206903. PubMed ID: 38829069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct experimental evidence of exciton-phonon bound states in carbon nanotubes.
    Plentz F; Ribeiro HB; Jorio A; Strano MS; Pimenta MA
    Phys Rev Lett; 2005 Dec; 95(24):247401. PubMed ID: 16384421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling of Excitons and Discrete Acoustic Phonons in Vibrationally Isolated Quantum Emitters.
    Werschler F; Hinz C; Froning F; Gumbsheimer P; Haase J; Negele C; de Roo T; Mecking S; Leitenstorfer A; Seletskiy DV
    Nano Lett; 2016 Sep; 16(9):5861-5. PubMed ID: 27550902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.