These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 2604013)
1. Ion leakage is reduced during anoxia in turtle brain: a potential survival strategy. Chih CP; Rosenthal M; Sick TJ Am J Physiol; 1989 Dec; 257(6 Pt 2):R1562-4. PubMed ID: 2604013 [TBL] [Abstract][Full Text] [Related]
2. Role for adenosine in channel arrest in the anoxic turtle brain. Pék M; Lutz PL J Exp Biol; 1997 Jul; 200(Pt 13):1913-7. PubMed ID: 9232005 [TBL] [Abstract][Full Text] [Related]
3. ATP-sensitive K+ channel activation provides transient protection to the anoxic turtle brain. Pék-Scott M; Lutz PL Am J Physiol; 1998 Dec; 275(6):R2023-7. PubMed ID: 9843892 [TBL] [Abstract][Full Text] [Related]
4. Energy metabolism, ion homeostasis, and evoked potentials in anoxic turtle brain. Chih CP; Feng ZC; Rosenthal M; Lutz PL; Sick TJ Am J Physiol; 1989 Oct; 257(4 Pt 2):R854-60. PubMed ID: 2802002 [TBL] [Abstract][Full Text] [Related]
5. Na Stecyk JA; Farrell AP; Vornanen M Comp Biochem Physiol A Mol Integr Physiol; 2017 Apr; 206():11-16. PubMed ID: 28089857 [TBL] [Abstract][Full Text] [Related]
6. Slow ATP loss and the defense of ion homeostasis in the anoxic frog brain. Knickerbocker DL; Lutz PL J Exp Biol; 2001 Oct; 204(Pt 20):3547-51. PubMed ID: 11707503 [TBL] [Abstract][Full Text] [Related]
7. Suppression of evoked potentials with continued ion transport during anoxia in turtle brain. Feng ZC; Rosenthal M; Sick TJ Am J Physiol; 1988 Sep; 255(3 Pt 2):R478-84. PubMed ID: 3414843 [TBL] [Abstract][Full Text] [Related]
13. Anoxic survival of the isolated cerebellum of the turtle Pseudemis scripta elegans. Pérez-Pinzón MA; Rosenthal M; Lutz PL; Sick TJ J Comp Physiol B; 1992; 162(1):68-73. PubMed ID: 1560121 [TBL] [Abstract][Full Text] [Related]
14. Downregulation of sodium channels during anoxia: a putative survival strategy of turtle brain. Pérez-Pinzón MA; Rosenthal M; Sick TJ; Lutz PL; Pablo J; Mash D Am J Physiol; 1992 Apr; 262(4 Pt 2):R712-5. PubMed ID: 1314518 [TBL] [Abstract][Full Text] [Related]
15. Anoxic suppression of Na(+)-K(+)-ATPase and constant membrane potential in hepatocytes: support for channel arrest. Buck LT; Hochachka PW Am J Physiol; 1993 Nov; 265(5 Pt 2):R1020-5. PubMed ID: 8238602 [TBL] [Abstract][Full Text] [Related]
16. Extracellular pH and suppression of electrical activity during anoxia in turtle and rat brain. Feng ZC; Sick TJ; Rosenthal M Am J Physiol; 1990 Jan; 258(1 Pt 2):R205-10. PubMed ID: 2301633 [TBL] [Abstract][Full Text] [Related]
17. Regulation of extracellular glutamate levels in the long-term anoxic turtle striatum: coordinated activity of glutamate transporters, adenosine, K (ATP) (+) channels and GABA. Thompson JW; Prentice HM; Lutz PL J Biomed Sci; 2007 Nov; 14(6):809-17. PubMed ID: 17629717 [TBL] [Abstract][Full Text] [Related]
18. Orthodromic field potentials and recurrent inhibition during anoxia in turtle brain. Feng ZC; Sick TJ; Rosenthal M Am J Physiol; 1988 Sep; 255(3 Pt 2):R485-91. PubMed ID: 3414844 [TBL] [Abstract][Full Text] [Related]
19. Anoxia-induced changes in extracellular K+ and pH in mammalian central white matter. Ransom BR; Walz W; Davis PK; Carlini WG J Cereb Blood Flow Metab; 1992 Jul; 12(4):593-602. PubMed ID: 1618938 [TBL] [Abstract][Full Text] [Related]
20. Relationship between energy expenditure and ion channel density in the turtle and rat brain. Edwards RA; Lutz PL; Baden DG Am J Physiol; 1989 Dec; 257(6 Pt 2):R1354-8. PubMed ID: 2481405 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]