These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 26040213)

  • 1. Loudness Context Effects in Normal-Hearing Listeners and Cochlear-Implant Users.
    Wang N; Kreft HA; Oxenham AJ
    J Assoc Res Otolaryngol; 2015 Aug; 16(4):535-45. PubMed ID: 26040213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induced Loudness Reduction and Enhancement in Acoustic and Electric Hearing.
    Wang N; Kreft H; Oxenham AJ
    J Assoc Res Otolaryngol; 2016 Aug; 17(4):383-91. PubMed ID: 27033086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unilateral cochlear implant use promotes normal-like loudness perception in adolescents with childhood deafness.
    Steel MM; Abbasalipour P; Salloum CA; Hasek D; Papsin BC; Gordon KA
    Ear Hear; 2014; 35(6):e291-301. PubMed ID: 25072236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pitch and lexical tone perception of bilingual English-Mandarin-speaking cochlear implant recipients, hearing aid users, and normally hearing listeners.
    Looi V; Teo ER; Loo J
    Cochlear Implants Int; 2015 Sep; 16 Suppl 3():S91-S104. PubMed ID: 26561892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The growth of loudness functions measured in cochlear implant listeners using absolute magnitude estimation and compared using Akaike's information criterion.
    Sanpetrino NM; Smith RL
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1642-4. PubMed ID: 17946915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frequency-dependent loudness balancing in bimodal cochlear implant users.
    Veugen LC; Chalupper J; Snik AF; van Opstal AJ; Mens LH
    Acta Otolaryngol; 2016 Aug; 136(8):775-81. PubMed ID: 26986743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vowel identification by cochlear implant users: contributions of static and dynamic spectral cues.
    Donaldson GS; Rogers CL; Cardenas ES; Russell BA; Hanna NH
    J Acoust Soc Am; 2013 Oct; 134(4):3021-8. PubMed ID: 24116437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reliability of categorical loudness scaling in the electrical domain.
    Theelen-van den Hoek FL; Boymans M; Stainsby T; Dreschler WA
    Int J Audiol; 2014 Jun; 53(6):409-17. PubMed ID: 24720542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conditioning pulse trains in cochlear implants: effects on loudness growth.
    Hong RS; Rubinstein JT
    Otol Neurotol; 2006 Jan; 27(1):50-6. PubMed ID: 16371847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perception of musical timbre by cochlear implant listeners: a multidimensional scaling study.
    Macherey O; Delpierre A
    Ear Hear; 2013; 34(4):426-36. PubMed ID: 23334356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of temporal gap identification on speech perception by users of cochlear implants.
    Sagi E; Kaiser AR; Meyer TA; Svirsky MA
    J Speech Lang Hear Res; 2009 Apr; 52(2):385-95. PubMed ID: 18806216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Restoration of loudness summation and differential loudness growth in hearing-impaired listeners.
    Strelcyk O; Nooraei N; Kalluri S; Edwards B
    J Acoust Soc Am; 2012 Oct; 132(4):2557-68. PubMed ID: 23039449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Speech perception with combined electric-acoustic stimulation and bilateral cochlear implants in a multisource noise field.
    Rader T; Fastl H; Baumann U
    Ear Hear; 2013; 34(3):324-32. PubMed ID: 23263408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ideal time-frequency masking algorithms lead to different speech intelligibility and quality in normal-hearing and cochlear implant listeners.
    Koning R; Madhu N; Wouters J
    IEEE Trans Biomed Eng; 2015 Jan; 62(1):331-41. PubMed ID: 25167542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comodulation masking release induced by controlled electrical stimulation of auditory nerve fibers.
    Zirn S; Hempel JM; Schuster M; Hemmert W
    Hear Res; 2013 Feb; 296():60-6. PubMed ID: 23220120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced audio-visual interactions in the auditory cortex of elderly cochlear-implant users.
    Schierholz I; Finke M; Schulte S; Hauthal N; Kantzke C; Rach S; Büchner A; Dengler R; Sandmann P
    Hear Res; 2015 Oct; 328():133-47. PubMed ID: 26302946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Speech prosody perception in cochlear implant users with and without residual hearing.
    Marx M; James C; Foxton J; Capber A; Fraysse B; Barone P; Deguine O
    Ear Hear; 2015; 36(2):239-48. PubMed ID: 25303861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectral loudness summation for electrical stimulation in cochlear implant users.
    Theelen-van den Hoek FL; Boymans M; Dreschler WA
    Int J Audiol; 2015; 54(11):818-27. PubMed ID: 26068301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loudness of dynamic stimuli in acoustic and electric hearing.
    Zhang C; Zeng FG
    J Acoust Soc Am; 1997 Nov; 102(5 Pt 1):2925-34. PubMed ID: 9373979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectral and binaural loudness summation of equally loud narrowband signals in single-sided-deafness and bilateral cochlear implant users.
    Hu H; Hartog L; Kollmeier B; Ewert SD
    Front Neurosci; 2022; 16():931748. PubMed ID: 36071716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.