These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 26040213)

  • 21. Perception of vowels and prosody by cochlear implant recipients in noise.
    Van Zyl M; Hanekom JJ
    J Commun Disord; 2013; 46(5-6):449-64. PubMed ID: 24157128
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of stimulus level on the speech perception abilities of children using cochlear implants or digital hearing aids.
    Davidson LS
    Ear Hear; 2006 Oct; 27(5):493-507. PubMed ID: 16957500
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Intensity discrimination and auditory brainstem responses in cochlear implant and normal-hearing listeners.
    Gallégo S; Micheyl C
    Behav Neurosci; 1998 Aug; 112(4):793-9. PubMed ID: 9733187
    [TBL] [Abstract][Full Text] [Related]  

  • 24. From fragments to the whole: a comparison between cochlear implant users and normal-hearing listeners in music perception and enjoyment.
    Alexander AJ; Bartel L; Friesen L; Shipp D; Chen J
    J Otolaryngol Head Neck Surg; 2011 Feb; 40(1):1-7. PubMed ID: 21303594
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mandarin lexical tone recognition in sensorineural hearing-impaired listeners and cochlear implant users.
    Wang S; Liu B; Zhang H; Dong R; Mannell R; Newall P; Chen X; Qi B; Zhang L; Han D
    Acta Otolaryngol; 2013 Jan; 133(1):47-54. PubMed ID: 23240663
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Vowel identification by cochlear implant users: Contributions of duration cues and dynamic spectral cues.
    Donaldson GS; Rogers CL; Johnson LB; Oh SH
    J Acoust Soc Am; 2015 Jul; 138(1):65-73. PubMed ID: 26233007
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mismatch negativity (MMN) objectively reflects timbre discrimination thresholds in normal-hearing listeners and cochlear implant users.
    Rahne T; Plontke SK; Wagner L
    Brain Res; 2014 Oct; 1586():143-51. PubMed ID: 25152464
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of Pulse Rate on Loudness Discrimination in Cochlear Implant Users.
    Azadpour M; McKay CM; Svirsky MA
    J Assoc Res Otolaryngol; 2018 Jun; 19(3):287-299. PubMed ID: 29532190
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of music perception in bilateral and unilateral cochlear implant users and normal-hearing subjects.
    Veekmans K; Ressel L; Mueller J; Vischer M; Brockmeier SJ
    Audiol Neurootol; 2009; 14(5):315-26. PubMed ID: 19372650
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of vowel context on the recognition of initial and medial consonants by cochlear implant users.
    Donaldson GS; Kreft HA
    Ear Hear; 2006 Dec; 27(6):658-77. PubMed ID: 17086077
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tinnitus in a single-sided deaf ear reduces speech reception in the nontinnitus ear.
    Mertens G; Kleine Punte A; De Ridder D; Van de Heyning P
    Otol Neurotol; 2013 Jun; 34(4):662-6. PubMed ID: 23640086
    [TBL] [Abstract][Full Text] [Related]  

  • 32. BKB-SIN and ANL predict perceived communication ability in cochlear implant users.
    Donaldson GS; Chisolm TH; Blasco GP; Shinnick LJ; Ketter KJ; Krause JC
    Ear Hear; 2009 Aug; 30(4):401-10. PubMed ID: 19390441
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Masking release and modulation interference in cochlear implant and simulation listeners.
    Jin SH; Nie Y; Nelson P
    Am J Audiol; 2013 Jun; 22(1):135-46. PubMed ID: 23800809
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sensitivity to interaural envelope correlation changes in bilateral cochlear-implant users.
    Goupell MJ; Litovsky RY
    J Acoust Soc Am; 2015 Jan; 137(1):335-49. PubMed ID: 25618064
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Physiologically motivated individual loudness model for normal hearing and hearing impaired listeners.
    Pieper I; Mauermann M; Oetting D; Kollmeier B; Ewert SD
    J Acoust Soc Am; 2018 Aug; 144(2):917. PubMed ID: 30180690
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Single- and multi-channel modulation detection in cochlear implant users.
    Galvin JJ; Oba S; Fu QJ; Başkent D
    PLoS One; 2014; 9(6):e99338. PubMed ID: 24918605
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A behavioral method to estimate charge integration efficiency in cochlear implant users.
    Zhou N; Dong L; Galvin JJ
    J Neurosci Methods; 2020 Aug; 342():108802. PubMed ID: 32522551
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrically-evoked auditory steady-state responses as neural correlates of loudness growth in cochlear implant users.
    Van Eeckhoutte M; Wouters J; Francart T
    Hear Res; 2018 Feb; 358():22-29. PubMed ID: 29274947
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of phase duration and electrode separation on loudness growth in cochlear implant listeners.
    Chatterjee M; Fu QJ; Shannon RV
    J Acoust Soc Am; 2000 Mar; 107(3):1637-44. PubMed ID: 10738817
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of percepts found with cochlear implant devices.
    Müller CG
    Ann N Y Acad Sci; 1983; 405():412-20. PubMed ID: 6575663
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.