BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 26040236)

  • 1. Sensitive and homogeneous microRNA detection using branched cascade enzymatic amplification.
    Chi BZ; Liang RP; Zhang L; Qiu JD
    Chem Commun (Camb); 2015 Jul; 51(52):10543-6. PubMed ID: 26040236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Luminescence determination of microRNAs based on the use of terbium(III) sensitized with an enzyme-activated guanine-rich nucleotide.
    Chi BZ; Liang RP; Yuan YH; Zhang L; Li ZM; Qiu JD
    Mikrochim Acta; 2018 May; 185(5):280. PubMed ID: 29725866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amplified detection of genome-containing biological targets using terminal deoxynucleotidyl transferase-assisted rolling circle amplification.
    Du YC; Zhu YJ; Li XY; Kong DM
    Chem Commun (Camb); 2018 Jan; 54(6):682-685. PubMed ID: 29303169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Target-triggered cascade recycling amplification for label-free detection of microRNA and molecular logic operations.
    Bi S; Ye J; Dong Y; Li H; Cao W
    Chem Commun (Camb); 2016 Jan; 52(2):402-5. PubMed ID: 26525041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Template-independent DNA polymerases.
    Yue D; Tabor S; Nichols NM
    Curr Protoc Mol Biol; 2008 Oct; Chapter 3():Unit3.6. PubMed ID: 18972388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitive detection of microRNA in complex biological samples via enzymatic signal amplification using DNA polymerase coupled with nicking endonuclease.
    Yin BC; Liu YQ; Ye BC
    Anal Chem; 2013 Dec; 85(23):11487-93. PubMed ID: 24195675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A T7 exonuclease-assisted cyclic enzymatic amplification method coupled with rolling circle amplification: a dual-amplification strategy for sensitive and selective microRNA detection.
    Cui L; Zhu Z; Lin N; Zhang H; Guan Z; Yang CJ
    Chem Commun (Camb); 2014 Feb; 50(13):1576-8. PubMed ID: 24382471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct fluorescence detection of microRNA based on enzymatically engineered primer extension poly-thymine (EPEPT) reaction using copper nanoparticles as nano-dye.
    Chi BZ; Liang RP; Qiu WB; Yuan YH; Qiu JD
    Biosens Bioelectron; 2017 Jan; 87():216-221. PubMed ID: 27566394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Click Chemical Ligation-Initiated On-Bead DNA Polymerization for the Sensitive Flow Cytometric Detection of 3'-Terminal 2'-O-Methylated Plant MicroRNA.
    Fan W; Qi Y; Qiu L; He P; Liu C; Li Z
    Anal Chem; 2018 Apr; 90(8):5390-5397. PubMed ID: 29600844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isothermal nucleic acid amplification strategy by cyclic enzymatic repairing for highly sensitive microRNA detection.
    Zhou DM; Du WF; Xi Q; Ge J; Jiang JH
    Anal Chem; 2014 Jul; 86(14):6763-7. PubMed ID: 24949808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Conformation limited nucleoside-5'-phosphates as termination substrates for DNA-polymerases].
    Chidzhavadze ZG; Bibilashvili RSh; Rozovskaia TA; Atrazhev AM; Tarusova NB; Minasian ShKh; Diatkina NB; Atrazheva ED; Kukhanova MK; Papchikhin AV
    Mol Biol (Mosk); 1989; 23(6):1732-42. PubMed ID: 2483745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Target-triggered three-way junction structure and polymerase/nicking enzyme synergetic isothermal quadratic DNA machine for highly specific, one-step, and rapid microRNA detection at attomolar level.
    Zhang Q; Chen F; Xu F; Zhao Y; Fan C
    Anal Chem; 2014 Aug; 86(16):8098-105. PubMed ID: 25072308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficiency and specificity of microRNA-primed nucleotide analog incorporation by various DNA polymerases.
    Sun Y; Gregory KJ; Golovlev V
    Anal Biochem; 2009 Aug; 391(2):85-90. PubMed ID: 19442643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exponential strand-displacement amplification for detection of microRNAs.
    Shi C; Liu Q; Ma C; Zhong W
    Anal Chem; 2014 Jan; 86(1):336-9. PubMed ID: 24345199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lab in a tube: ultrasensitive detection of microRNAs at the single-cell level and in breast cancer patients using quadratic isothermal amplification.
    Duan R; Zuo X; Wang S; Quan X; Chen D; Chen Z; Jiang L; Fan C; Xia F
    J Am Chem Soc; 2013 Mar; 135(12):4604-7. PubMed ID: 23445447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single Primer Based Multisite Strand Displacement Reaction Amplification Strategy for Rapid Detection of Terminal Deoxynucleotidyl Transferase Activity.
    Liu X; Wang H; Deng K; Kwee S; Huang H; Tang L
    Anal Chem; 2019 Jun; 91(11):7482-7486. PubMed ID: 31082205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An enzymatic oligonucleotide synthesizer.
    Tang L
    Nat Methods; 2018 Aug; 15(8):568. PubMed ID: 30065377
    [No Abstract]   [Full Text] [Related]  

  • 18. Multiple amplification detection of microRNA based on the host-guest interaction between β-cyclodextrin polymer and pyrene.
    Guo X; Yang X; Liu P; Wang K; Wang Q; Guo Q; Huang J; Li W; Xu F; Song C
    Analyst; 2015 Jun; 140(12):4291-7. PubMed ID: 25943710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitive and convenient detection of microRNAs based on cascade amplification by catalytic DNAzymes.
    Tian T; Xiao H; Zhang Z; Long Y; Peng S; Wang S; Zhou X; Liu S; Zhou X
    Chemistry; 2013 Jan; 19(1):92-5. PubMed ID: 23225082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Triple cascade reactions: An ultrasensitive and specific single tube strategy enabling isothermal analysis of microRNA at sub-attomole level.
    Zhou X; Liang Y; Xu Y; Lin X; Chen J; Ma Y; Zhang L; Chen D; Song F; Dai Z; Zou X
    Biosens Bioelectron; 2016 Jun; 80():378-384. PubMed ID: 26866563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.