These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 26040418)

  • 1. A large replum-valve joint area is associated with increased resistance to pod shattering in rapeseed.
    Hu Z; Yang H; Zhang L; Wang X; Liu G; Wang H; Hua W
    J Plant Res; 2015 Sep; 128(5):813-9. PubMed ID: 26040418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of INDEHISCENT point mutations on silique shatter resistance in oilseed rape (Brassica napus).
    Braatz J; Harloff HJ; Emrani N; Elisha C; Heepe L; Gorb SN; Jung C
    Theor Appl Genet; 2018 Apr; 131(4):959-971. PubMed ID: 29340752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR/Cas9-Mediated Multiplex Genome Editing of JAGGED Gene in
    Zaman QU; Chu W; Hao M; Shi Y; Sun M; Sang SF; Mei D; Cheng H; Liu J; Li C; Hu Q
    Biomolecules; 2019 Nov; 9(11):. PubMed ID: 31726660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A copia-like retrotransposon insertion in the upstream region of the SHATTERPROOF1 gene, BnSHP1.A9, is associated with quantitative variation in pod shattering resistance in oilseed rape.
    Liu J; Zhou R; Wang W; Wang H; Qiu Y; Raman R; Mei D; Raman H; Hu Q
    J Exp Bot; 2020 Sep; 71(18):5402-5413. PubMed ID: 32525990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiological Mechanisms behind Differences in Pod Shattering Resistance in Rapeseed (Brassica napus L.) Varieties.
    Kuai J; Sun Y; Liu T; Zhang P; Zhou M; Wu J; Zhou G
    PLoS One; 2016; 11(6):e0157341. PubMed ID: 27299997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased resistance to pod shatter is associated with changes in the vascular structure in pods of a resynthesized Brassica napus line.
    Child RD; Summers JE; Babij J; Farrent JW; Bruce DM
    J Exp Bot; 2003 Aug; 54(389):1919-30. PubMed ID: 12837816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. miR319-Regulated TCP3 Modulates Silique Development Associated with Seed Shattering in Brassicaceae.
    Cao B; Wang H; Bai J; Wang X; Li X; Zhang Y; Yang S; He Y; Yu X
    Cells; 2022 Oct; 11(19):. PubMed ID: 36231057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BnLATE, a Cys2/His2-Type Zinc-Finger Protein, Enhances Silique Shattering Resistance by Negatively Regulating Lignin Accumulation in the Silique Walls of Brassica napus.
    Tao Z; Huang Y; Zhang L; Wang X; Liu G; Wang H
    PLoS One; 2017; 12(1):e0168046. PubMed ID: 28081140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide identification of GH28 family and insight into its contributions to pod shattering resistance in Brassica napus L.
    Zhang F; Liu N; Chen T; Xu H; Li R; Wang L; Zhou S; Cai Q; Hou X; Wang L; Qian X; Zhu Z; Zhou K
    BMC Genomics; 2024 May; 25(1):492. PubMed ID: 38760719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of
    Zaman QU; Wen C; Yuqin S; Mengyu H; Desheng M; Jacqueline B; Baohong Z; Chao L; Qiong H
    CRISPR J; 2021 Jun; 4(3):360-370. PubMed ID: 34152222
    [No Abstract]   [Full Text] [Related]  

  • 11. Novel quantitative trait loci from an interspecific
    Raman H; Raman R; Sharma N; Cui X; McVittie B; Qiu Y; Zhang Y; Hu Q; Liu S; Gororo N
    Front Plant Sci; 2023; 14():1233996. PubMed ID: 37736615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression divergence of FRUITFULL homeologs enhanced pod shatter resistance in Brassica napus.
    Peng PF; Li YC; Mei DS; Colasanti J; Fu L; Liu J; Chen YF; Hu Q
    Genet Mol Res; 2015 Feb; 14(1):871-85. PubMed ID: 25730026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multigenic Control of Pod Shattering Resistance in Chinese Rapeseed Germplasm Revealed by Genome-Wide Association and Linkage Analyses.
    Liu J; Wang J; Wang H; Wang W; Zhou R; Mei D; Cheng H; Yang J; Raman H; Hu Q
    Front Plant Sci; 2016; 7():1058. PubMed ID: 27493651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Research progress and mitigation strategies for pod shattering resistance in rapeseed.
    Liu L; Javed HH; Hu Y; Luo YQ; Peng X; Wu YC
    PeerJ; 2024; 12():e18105. PubMed ID: 39430553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular Diversity Analysis and Genetic Mapping of Pod Shatter Resistance Loci in
    Raman R; Qiu Y; Coombes N; Song J; Kilian A; Raman H
    Front Plant Sci; 2017; 8():1765. PubMed ID: 29250080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring silique number in Brassica napus L.: Genetic and molecular advances for improving yield.
    Wang H; Li X; Meng B; Fan Y; Khan SU; Qian M; Zhang M; Yang H; Lu K
    Plant Biotechnol J; 2024 Jul; 22(7):1897-1912. PubMed ID: 38386569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR/Cas9-mediated genome editing reveals differences in the contribution of INDEHISCENT homologues to pod shatter resistance in Brassica napus L.
    Zhai Y; Cai S; Hu L; Yang Y; Amoo O; Fan C; Zhou Y
    Theor Appl Genet; 2019 Jul; 132(7):2111-2123. PubMed ID: 30980103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transfer of sclerotinia resistance from wild relative of Brassica oleracea into Brassica napus using a hexaploidy step.
    Mei J; Liu Y; Wei D; Wittkop B; Ding Y; Li Q; Li J; Wan H; Li Z; Ge X; Frauen M; Snowdon RJ; Qian W; Friedt W
    Theor Appl Genet; 2015 Apr; 128(4):639-44. PubMed ID: 25628163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterizing the role of endocarp
    Nichol JB; Samuel MA
    Plant Signal Behav; 2024 Dec; 19(1):2384243. PubMed ID: 39074045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative trait loci analysis and genome-wide comparison for silique related traits in Brassica napus.
    Wang X; Chen L; Wang A; Wang H; Tian J; Zhao X; Chao H; Zhao Y; Zhao W; Xiang J; Gan J; Li M
    BMC Plant Biol; 2016 Mar; 16():71. PubMed ID: 27000872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.