These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 26040489)

  • 1. UNCLES: method for the identification of genes differentially consistently co-expressed in a specific subset of datasets.
    Abu-Jamous B; Fa R; Roberts DJ; Nandi AK
    BMC Bioinformatics; 2015 Jun; 16():184. PubMed ID: 26040489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comprehensive analysis of forty yeast microarray datasets reveals a novel subset of genes (APha-RiB) consistently negatively associated with ribosome biogenesis.
    Abu-Jamous B; Fa R; Roberts DJ; Nandi AK
    BMC Bioinformatics; 2014 Sep; 15(1):322. PubMed ID: 25267386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Paradigm of tunable clustering using Binarization of Consensus Partition Matrices (Bi-CoPaM) for gene discovery.
    Abu-Jamous B; Fa R; Roberts DJ; Nandi AK
    PLoS One; 2013; 8(2):e56432. PubMed ID: 23409186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Yeast gene CMR1/YDL156W is consistently co-expressed with genes participating in DNA-metabolic processes in a variety of stringent clustering experiments.
    Abu-Jamous B; Fa R; Roberts DJ; Nandi AK
    J R Soc Interface; 2013 Apr; 10(81):20120990. PubMed ID: 23349438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic biclustering of microarray data by multi-objective immune optimization.
    Liu J; Li Z; Hu X; Chen Y; Park EK
    BMC Genomics; 2011; 12 Suppl 2(Suppl 2):S11. PubMed ID: 21989068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new strategy of cooperativity of biclustering and hierarchical clustering: a case of analyzing yeast genomic microarray datasets.
    Mao D; Luo Y; Zhang J; Zhu J
    Front Biosci; 2005 May; 10():1619-27. PubMed ID: 15769651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative analysis of multiple genome-scale data sets.
    Werner-Washburne M; Wylie B; Boyack K; Fuge E; Galbraith J; Weber J; Davidson G
    Genome Res; 2002 Oct; 12(10):1564-73. PubMed ID: 12368249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interpolation based consensus clustering for gene expression time series.
    Chiu TY; Hsu TC; Yen CC; Wang JS
    BMC Bioinformatics; 2015 Apr; 16():117. PubMed ID: 25888019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of microarrays experiments missing values on the stability of gene groups by hierarchical clustering.
    de Brevern AG; Hazout S; Malpertuy A
    BMC Bioinformatics; 2004 Aug; 5():114. PubMed ID: 15324460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biclustering of microarray data with MOSPO based on crowding distance.
    Liu J; Li Z; Hu X; Chen Y
    BMC Bioinformatics; 2009 Apr; 10 Suppl 4(Suppl 4):S9. PubMed ID: 19426457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A systematic comparison of genome-scale clustering algorithms.
    Jay JJ; Eblen JD; Zhang Y; Benson M; Perkins AD; Saxton AM; Voy BH; Chesler EJ; Langston MA
    BMC Bioinformatics; 2012 Jun; 13 Suppl 10(Suppl 10):S7. PubMed ID: 22759431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene expression data analysis using multiobjective clustering improved with SVM based ensemble.
    Mukhopadhyay A; Maulik U; Bandyopadhyay S
    In Silico Biol; 2011-2012; 11(1-2):19-27. PubMed ID: 22475749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detecting biological associations between genes based on the theory of phase synchronization.
    Kim CS; Riikonen P; Salakoski T
    Biosystems; 2008 May; 92(2):99-113. PubMed ID: 18289772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional grouping of yeast genes via biclustering microarray data.
    Mao D; Luo Y; Cheng M; Zhang J
    Front Biosci; 2005 Sep; 10():2669-75. PubMed ID: 15970526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A method to identify differential expression profiles of time-course gene data with Fourier transformation.
    Kim J; Ogden RT; Kim H
    BMC Bioinformatics; 2013 Oct; 14():310. PubMed ID: 24134721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-clustering and visualization of gene expression data and gene ontology terms for Saccharomyces cerevisiae using self-organizing maps.
    Brameier M; Wiuf C
    J Biomed Inform; 2007 Apr; 40(2):160-73. PubMed ID: 16824804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying gene-specific subgroups: an alternative to biclustering.
    Branders V; Schaus P; Dupont P
    BMC Bioinformatics; 2019 Dec; 20(1):625. PubMed ID: 31795929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying functional relationships within sets of co-expressed genes by combining upstream regulatory motif analysis and gene expression information.
    Martyanov V; Gross RH
    BMC Genomics; 2010 Nov; 11 Suppl 2(Suppl 2):S8. PubMed ID: 21047389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A formal concept analysis approach to consensus clustering of multi-experiment expression data.
    Hristoskova A; Boeva V; Tsiporkova E
    BMC Bioinformatics; 2014 May; 15():151. PubMed ID: 24885407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A systematic comparison and evaluation of biclustering methods for gene expression data.
    Prelić A; Bleuler S; Zimmermann P; Wille A; Bühlmann P; Gruissem W; Hennig L; Thiele L; Zitzler E
    Bioinformatics; 2006 May; 22(9):1122-9. PubMed ID: 16500941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.