These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 26040531)

  • 1. Ab Initio Molecular-Dynamics Simulation of Neuromorphic Computing in Phase-Change Memory Materials.
    Skelton JM; Loke D; Lee T; Elliott SR
    ACS Appl Mater Interfaces; 2015 Jul; 7(26):14223-30. PubMed ID: 26040531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural, electronic and kinetic properties of the phase-change material Ge2Sb2Te5 in the liquid state.
    Schumacher M; Weber H; Jóvári P; Tsuchiya Y; Youngs TG; Kaban I; Mazzarello R
    Sci Rep; 2016 Jun; 6():27434. PubMed ID: 27272222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing.
    Kuzum D; Jeyasingh RG; Lee B; Wong HS
    Nano Lett; 2012 May; 12(5):2179-86. PubMed ID: 21668029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unraveling Crystallization Mechanisms and Electronic Structure of Phase-Change Materials by Large-Scale Ab Initio Simulations.
    Xu Y; Zhou Y; Wang XD; Zhang W; Ma E; Deringer VL; Mazzarello R
    Adv Mater; 2022 Mar; 34(11):e2109139. PubMed ID: 34994023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unsupervised Learning by Spike Timing Dependent Plasticity in Phase Change Memory (PCM) Synapses.
    Ambrogio S; Ciocchini N; Laudato M; Milo V; Pirovano A; Fantini P; Ielmini D
    Front Neurosci; 2016; 10():56. PubMed ID: 27013934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. All-memristive neuromorphic computing with level-tuned neurons.
    Pantazi A; Woźniak S; Tuma T; Eleftheriou E
    Nanotechnology; 2016 Sep; 27(35):355205. PubMed ID: 27455898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward ultimate nonvolatile resistive memories: The mechanism behind ovonic threshold switching revealed.
    Noé P; Verdy A; d'Acapito F; Dory JB; Bernard M; Navarro G; Jager JB; Gaudin J; Raty JY
    Sci Adv; 2020 Feb; 6(9):eaay2830. PubMed ID: 32158940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unique melting behavior in phase-change materials for rewritable data storage.
    Sun Z; Zhou J; Ahuja R
    Phys Rev Lett; 2007 Feb; 98(5):055505. PubMed ID: 17358874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Origin of radiation tolerance in amorphous Ge
    Konstantinou K; Lee TH; Mocanu FC; Elliott SR
    Proc Natl Acad Sci U S A; 2018 May; 115(21):5353-5358. PubMed ID: 29735691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analog memory and spike-timing-dependent plasticity characteristics of a nanoscale titanium oxide bilayer resistive switching device.
    Seo K; Kim I; Jung S; Jo M; Park S; Park J; Shin J; Biju KP; Kong J; Lee K; Lee B; Hwang H
    Nanotechnology; 2011 Jun; 22(25):254023. PubMed ID: 21572200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultra-low-energy three-dimensional oxide-based electronic synapses for implementation of robust high-accuracy neuromorphic computation systems.
    Gao B; Bi Y; Chen HY; Liu R; Huang P; Chen B; Liu L; Liu X; Yu S; Wong HS; Kang J
    ACS Nano; 2014 Jul; 8(7):6998-7004. PubMed ID: 24884237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoscale Chemical Heterogeneity Ensures Unprecedently Low Resistance Drift in Cache-Type Phase-Change Memory Materials.
    Huang J; Chen B; Sha G; Gong H; Song T; Ding K; Rao F
    Nano Lett; 2023 Mar; 23(6):2362-2369. PubMed ID: 36861962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ab initio and classical molecular dynamics studies of the structural and dynamical behavior of water near a hydrophobic graphene sheet.
    Rana MK; Chandra A
    J Chem Phys; 2013 May; 138(20):204702. PubMed ID: 23742495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Advances on Neuromorphic Systems Using Phase-Change Materials.
    Wang L; Lu SR; Wen J
    Nanoscale Res Lett; 2017 Dec; 12(1):347. PubMed ID: 28499334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ab initio computer simulations of non-equilibrium radiation-induced cascades in amorphous Ge
    Konstantinou K; Mocanu FC; Lee TH; Elliott SR
    J Phys Condens Matter; 2018 Nov; 30(45):455401. PubMed ID: 30239335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Breaking the speed limits of phase-change memory.
    Loke D; Lee TH; Wang WJ; Shi LP; Zhao R; Yeo YC; Chong TC; Elliott SR
    Science; 2012 Jun; 336(6088):1566-9. PubMed ID: 22723419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and electronic properties of organo-halide hybrid perovskites from ab initio molecular dynamics.
    Quarti C; Mosconi E; De Angelis F
    Phys Chem Chem Phys; 2015 Apr; 17(14):9394-409. PubMed ID: 25766785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding phase-change behaviors of carbon-doped Ge₂Sb₂Te₅ for phase-change memory application.
    Zhou X; Xia M; Rao F; Wu L; Li X; Song Z; Feng S; Sun H
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):14207-14. PubMed ID: 25090618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Materials Screening for Disorder-Controlled Chalcogenide Crystals for Phase-Change Memory Applications.
    Xu Y; Wang X; Zhang W; Schäfer L; Reindl J; Vom Bruch F; Zhou Y; Evang V; Wang JJ; Deringer VL; Ma E; Wuttig M; Mazzarello R
    Adv Mater; 2021 Mar; 33(9):e2006221. PubMed ID: 33491816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.