BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 26040556)

  • 1. Identifying and assessing the impact of wine acid-related genes in yeast.
    Chidi BS; Rossouw D; Bauer FF
    Curr Genet; 2016 Feb; 62(1):149-64. PubMed ID: 26040556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pre-fermentative supplementation of fatty acids alters the metabolic activity of wine yeasts.
    Pinu FR; Villas-Boas SG; Martin D
    Food Res Int; 2019 Jul; 121():835-844. PubMed ID: 31108815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Linking gene regulation and the exo-metabolome: a comparative transcriptomics approach to identify genes that impact on the production of volatile aroma compounds in yeast.
    Rossouw D; Naes T; Bauer FF
    BMC Genomics; 2008 Nov; 9():530. PubMed ID: 18990252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrating transcriptomics and metabolomics for the analysis of the aroma profiles of Saccharomyces cerevisiae strains from diverse origins.
    Mendes I; Sanchez I; Franco-Duarte R; Camarasa C; Schuller D; Dequin S; Sousa MJ
    BMC Genomics; 2017 Jun; 18(1):455. PubMed ID: 28595605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparing the transcriptomes of wine yeast strains: toward understanding the interaction between environment and transcriptome during fermentation.
    Rossouw D; Bauer FF
    Appl Microbiol Biotechnol; 2009 Oct; 84(5):937-54. PubMed ID: 19711068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative transcriptomic analysis reveals similarities and dissimilarities in Saccharomyces cerevisiae wine strains response to nitrogen availability.
    Barbosa C; García-Martínez J; Pérez-Ortín JE; Mendes-Ferreira A
    PLoS One; 2015; 10(4):e0122709. PubMed ID: 25884705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae.
    Comitini F; Gobbi M; Domizio P; Romani C; Lencioni L; Mannazzu I; Ciani M
    Food Microbiol; 2011 Aug; 28(5):873-82. PubMed ID: 21569929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of polysaccharide-degrading wine yeast transformants on the efficiency of wine processing and wine flavour.
    Louw C; La Grange D; Pretorius IS; van Rensburg P
    J Biotechnol; 2006 Oct; 125(4):447-61. PubMed ID: 16644051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential expression of thiamine biosynthetic genes in yeast strains with high and low production of hydrogen sulfide during wine fermentation.
    Bartra E; Casado M; Carro D; Campamà C; Piña B
    J Appl Microbiol; 2010 Jul; 109(1):272-81. PubMed ID: 20059614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative analysis of wine yeast gene expression profiles under winemaking conditions.
    Varela C; Cárdenas J; Melo F; Agosin E
    Yeast; 2005 Apr; 22(5):369-83. PubMed ID: 15806604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pilot-scale evaluation the enological traits of a novel, aromatic wine yeast strain obtained by adaptive evolution.
    Cadière A; Aguera E; Caillé S; Ortiz-Julien A; Dequin S
    Food Microbiol; 2012 Dec; 32(2):332-7. PubMed ID: 22986198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide identification of genes involved in growth and fermentation activity at low temperature in Saccharomyces cerevisiae.
    Salvadó Z; Ramos-Alonso L; Tronchoni J; Penacho V; García-Ríos E; Morales P; Gonzalez R; Guillamón JM
    Int J Food Microbiol; 2016 Nov; 236():38-46. PubMed ID: 27442849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Saccharomyces cerevisiae Cytosolic Thioredoxins Control Glycolysis, Lipid Metabolism, and Protein Biosynthesis under Wine-Making Conditions.
    Picazo C; McDonagh B; Peinado J; Bárcena JA; Matallana E; Aranda A
    Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30683739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomic expression program of Saccharomyces cerevisiae along a mixed-culture wine fermentation with Hanseniaspora guilliermondii.
    Barbosa C; Mendes-Faia A; Lage P; Mira NP; Mendes-Ferreira A
    Microb Cell Fact; 2015 Aug; 14():124. PubMed ID: 26314747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic profiling as a tool for revealing Saccharomyces interactions during wine fermentation.
    Howell KS; Cozzolino D; Bartowsky EJ; Fleet GH; Henschke PA
    FEMS Yeast Res; 2006 Jan; 6(1):91-101. PubMed ID: 16423074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of target genes to control acetate yield during aerobic fermentation with Saccharomyces cerevisiae.
    Curiel JA; Salvadó Z; Tronchoni J; Morales P; Rodrigues AJ; Quirós M; Gonzalez R
    Microb Cell Fact; 2016 Sep; 15(1):156. PubMed ID: 27627879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth of non-Saccharomyces yeasts affects nutrient availability for Saccharomyces cerevisiae during wine fermentation.
    Medina K; Boido E; Dellacassa E; Carrau F
    Int J Food Microbiol; 2012 Jul; 157(2):245-50. PubMed ID: 22687186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNAseq-based transcriptome comparison of Saccharomyces cerevisiae strains isolated from diverse fermentative environments.
    Ibáñez C; Pérez-Torrado R; Morard M; Toft C; Barrio E; Querol A
    Int J Food Microbiol; 2017 Sep; 257():262-270. PubMed ID: 28711856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic flux sampling predicts strain-dependent differences related to aroma production among commercial wine yeasts.
    Scott WT; Smid EJ; Block DE; Notebaart RA
    Microb Cell Fact; 2021 Oct; 20(1):204. PubMed ID: 34674718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Key role of lipid management in nitrogen and aroma metabolism in an evolved wine yeast strain.
    Rollero S; Mouret JR; Sanchez I; Camarasa C; Ortiz-Julien A; Sablayrolles JM; Dequin S
    Microb Cell Fact; 2016 Feb; 15():32. PubMed ID: 26861624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.