These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 26040600)

  • 1. Quantification of the passive and active biaxial mechanical behaviour and microstructural organization of rat thoracic ducts.
    Caulk AW; Nepiyushchikh ZV; Shaw R; Dixon JB; Gleason RL
    J R Soc Interface; 2015 Jul; 12(108):20150280. PubMed ID: 26040600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Passive pressure-diameter relationship and structural composition of rat mesenteric lymphangions.
    Rahbar E; Weimer J; Gibbs H; Yeh AT; Bertram CD; Davis MJ; Hill MA; Zawieja DC; Moore JE
    Lymphat Res Biol; 2012 Dec; 10(4):152-63. PubMed ID: 23145980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A lumped parameter model of mechanically mediated acute and long-term adaptations of contractility and geometry in lymphatics for characterization of lymphedema.
    Caulk AW; Dixon JB; Gleason RL
    Biomech Model Mechanobiol; 2016 Dec; 15(6):1601-1618. PubMed ID: 27043026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-based constitutive model can accurately predict planar biaxial properties of aortic wall tissue.
    Polzer S; Gasser TC; Novak K; Man V; Tichy M; Skacel P; Bursa J
    Acta Biomater; 2015 Mar; 14():133-45. PubMed ID: 25458466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of rat tail lymphatic contractility and biomechanics: incorporating nitric oxide-mediated vasoregulation.
    Razavi MS; Dixon JB; Gleason RL
    J R Soc Interface; 2020 Sep; 17(170):20200598. PubMed ID: 32993429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling the mechanical response of elastin for arterial tissue.
    Watton PN; Ventikos Y; Holzapfel GA
    J Biomech; 2009 Jun; 42(9):1320-5. PubMed ID: 19394942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The passive biomechanics of human pelvic collecting lymphatic vessels.
    Athanasiou D; Edgar LT; Jafarnejad M; Nixon K; Duarte D; Hawkins ED; Jamalian S; Cunnea P; Lo Celso C; Kobayashi S; Fotopoulou C; Moore JE
    PLoS One; 2017; 12(8):e0183222. PubMed ID: 28827843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microstructure-based constitutive modeling for the large intestine validated by histological observations.
    Sokolis DP; Sassani SG
    J Mech Behav Biomed Mater; 2013 May; 21():149-66. PubMed ID: 23545202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of dynamic shear and transmural pressure on wall shear stress sensitivity in collecting lymphatic vessels.
    Kornuta JA; Nepiyushchikh Z; Gasheva OY; Mukherjee A; Zawieja DC; Dixon JB
    Am J Physiol Regul Integr Comp Physiol; 2015 Nov; 309(9):R1122-34. PubMed ID: 26333787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential mechanical response and microstructural organization between non-human primate femoral and carotid arteries.
    Wang R; Raykin J; Li H; Gleason RL; Brewster LP
    Biomech Model Mechanobiol; 2014 Oct; 13(5):1041-51. PubMed ID: 24532266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An experimental and theoretical study on the anisotropy of elastin network.
    Zou Y; Zhang Y
    Ann Biomed Eng; 2009 Aug; 37(8):1572-83. PubMed ID: 19484387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Limiting extensibility constitutive model with distributed fibre orientations and ageing of abdominal aorta.
    Horný L; Netušil M; Daniel M
    J Mech Behav Biomed Mater; 2014 Oct; 38():39-51. PubMed ID: 25016175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Normal basilar artery structure and biaxial mechanical behaviour.
    Wicker BK; Hutchens HP; Wu Q; Yeh AT; Humphrey JD
    Comput Methods Biomech Biomed Engin; 2008 Oct; 11(5):539-51. PubMed ID: 19230148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microstructurally motivated constitutive modeling of mouse arteries cultured under altered axial stretch.
    Hansen L; Wan W; Gleason RL
    J Biomech Eng; 2009 Oct; 131(10):101015. PubMed ID: 19831485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biaxial vasoactivity of porcine coronary artery.
    Huo Y; Cheng Y; Zhao X; Lu X; Kassab GS
    Am J Physiol Heart Circ Physiol; 2012 May; 302(10):H2058-63. PubMed ID: 22427520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regional heterogeneity of length-tension relationships in rat lymph vessels.
    Gashev AA; Zhang RZ; Muthuchamy M; Zawieja DC; Davis MJ
    Lymphat Res Biol; 2012 Mar; 10(1):14-9. PubMed ID: 22416912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the AIC-based model reduction for the general Holzapfel-Ogden myocardial constitutive law.
    Guan D; Ahmad F; Theobald P; Soe S; Luo X; Gao H
    Biomech Model Mechanobiol; 2019 Aug; 18(4):1213-1232. PubMed ID: 30945052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Passive biaxial mechanical response of aged human iliac arteries.
    Schulze-Bauer CA; Mörth C; Holzapfel GA
    J Biomech Eng; 2003 Jun; 125(3):395-406. PubMed ID: 12929245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stretch-induced calcium sensitization of rat lymphatic smooth muscle.
    Shirasawa Y; Benoit JN
    Am J Physiol Heart Circ Physiol; 2003 Dec; 285(6):H2573-7. PubMed ID: 12946938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical properties and composition of mesenteric small arteries of simulated microgravity rats with and without daily -G(x) gravitation.
    Gao F; Cheng JH; Bai YG; Boscolo M; Huang XF; Zhang X; Zhang LF
    Sheng Li Xue Bao; 2012 Apr; 64(2):107-20. PubMed ID: 22513459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.