These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 26040740)

  • 1. Chemical looping combustion: A new low-dioxin energy conversion technology.
    Hua X; Wang W
    J Environ Sci (China); 2015 Jun; 32():135-45. PubMed ID: 26040740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical simulation of gas concentration and dioxin formation for MSW combustion in a fixed bed.
    Sun R; Ismail TM; Ren X; Abd El-Salam M
    J Environ Manage; 2015 Jul; 157():111-7. PubMed ID: 25897505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy from Waste--clean, efficient, renewable: transitions in combustion efficiency and NOx control.
    Waldner MH; Halter R; Sigg A; Brosch B; Gehrmann HJ; Keunecke M
    Waste Manag; 2013 Feb; 33(2):317-26. PubMed ID: 23044260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Curbing dioxin emissions from municipal solid waste incineration in China: re-thinking about management policies and practices.
    Cheng H; Hu Y
    Environ Pollut; 2010 Sep; 158(9):2809-14. PubMed ID: 20619516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new gasification and melting incineration process of MSW with co-current shaft furnace.
    Zhao W; Wang Q; Zou Z; Liu H; Zheng H; Zhang L
    J Environ Sci (China); 2009; 21 Suppl 1():S108-11. PubMed ID: 25084404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization study and five-cycle tests in a fixed-bed reactor of titania-supported nickel oxide as oxygen carriers for the chemical-looping combustion of methane.
    Corbella BM; de Diego LF; García-Labiano F; Adánez J; Palaciost JM
    Environ Sci Technol; 2005 Aug; 39(15):5796-803. PubMed ID: 16124317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulfur evolution in chemical looping combustion of coal with MnFe2O4 oxygen carrier.
    Wang B; Gao C; Wang W; Zhao H; Zheng C
    J Environ Sci (China); 2014 May; 26(5):1062-70. PubMed ID: 25079636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of regenerated ferric oxide for CO destruction and suppressing dioxin formation in flue gas in a pilot-scale incinerator.
    Hung WT; Lin CF
    Chemosphere; 2003 Nov; 53(7):727-35. PubMed ID: 13129512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Review of disposal technologies for chromated copper arsenate (CCA) treated wood waste, with detailed analyses of thermochemical conversion processes.
    Helsen L; Van den Bulck E
    Environ Pollut; 2005 Mar; 134(2):301-14. PubMed ID: 15589657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrothermal treatment of municipal solid waste incineration fly ash for dioxin decomposition.
    Hu Y; Zhang P; Chen D; Zhou B; Li J; Li XW
    J Hazard Mater; 2012 Mar; 207-208():79-85. PubMed ID: 21680088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental research on emission and removal of dioxins in flue gas from a co-combustion of MSW and coal incinerator.
    Zhong Z; Jin B; Huang Y; Zhou H; Lan J
    Waste Manag; 2006; 26(6):580-6. PubMed ID: 16054809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dioxin and furan formation in FBC boilers.
    Anthony EJ; Jia L; Granatstein DL
    Environ Sci Technol; 2001 Jul; 35(14):3002-7. PubMed ID: 11478255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of liquid chemical feedstocks by co-pyrolysis of electronic waste and biomass without formation of polybrominated dibenzo-p-dioxins.
    Liu WJ; Tian K; Jiang H; Zhang XS; Yang GX
    Bioresour Technol; 2013 Jan; 128():1-7. PubMed ID: 23196214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Low-temperature thermal treatment of dioxin in medical waste fly ash under unert atmosphere].
    Ji SS; Li XD; Xu X; Chen T
    Huan Jing Ke Xue; 2012 Nov; 33(11):3999-4005. PubMed ID: 23323437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamic analysis of in situ gasification-chemical looping combustion (iG-CLC) of Indian coal.
    Suresh PV; Menon KG; Prakash KS; Prudhvi S; Anudeep A
    Environ Sci Pollut Res Int; 2016 Oct; 23(20):20111-20119. PubMed ID: 26564191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combustion characteristics of simulated gas fuel in a 30 kg/h scale pyrolysis-melting incinerator.
    Shin D; Yu T; Yang W; Jeon B; Park S; Hwang J
    Waste Manag; 2008 Nov; 28(11):2422-7. PubMed ID: 18325753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dioxin emissions from municipal solid waste incinerators (MSWIs) in France.
    Nzihou A; Themelis NJ; Kemiha M; Benhamou Y
    Waste Manag; 2012 Dec; 32(12):2273-7. PubMed ID: 22819593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Review on fate of chlorine during thermal processing of solid wastes.
    Lu P; Huang Q; Bourtsalas ACT; Themelis NJ; Chi Y; Yan J
    J Environ Sci (China); 2019 Apr; 78():13-28. PubMed ID: 30665632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of toxic chemicals including dioxin-related compounds by combustion from a small home waste incinerator.
    Nakao T; Aozasa O; Ohta S; Miyata H
    Chemosphere; 2006 Jan; 62(3):459-68. PubMed ID: 15975628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elaboration of new formulations to remove micropollutants in MSWI flue gas.
    Brasseur A; Gambin A; Laudet A; Marien J; Pirard JP
    Chemosphere; 2004 Aug; 56(8):745-56. PubMed ID: 15251289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.