These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
316 related articles for article (PubMed ID: 26040744)
1. Interaction between Cu2+ and different types of surface-modified nanoscale zero-valent iron during their transport in porous media. Dong H; Zeng G; Zhang C; Liang J; Ahmad K; Xu P; He X; Lai M J Environ Sci (China); 2015 Jun; 32():180-8. PubMed ID: 26040744 [TBL] [Abstract][Full Text] [Related]
2. Influence of humic acid on the colloidal stability of surface-modified nano zero-valent iron. Dong H; Lo IM Water Res; 2013 Jan; 47(1):419-27. PubMed ID: 23123051 [TBL] [Abstract][Full Text] [Related]
3. Influence of calcium ions on the colloidal stability of surface-modified nano zero-valent iron in the absence or presence of humic acid. Dong H; Lo IM Water Res; 2013 May; 47(7):2489-96. PubMed ID: 23466217 [TBL] [Abstract][Full Text] [Related]
4. Carbonate minerals in porous media decrease mobility of polyacrylic acid modified zero-valent iron nanoparticles used for groundwater remediation. Laumann S; Micić V; Lowry GV; Hofmann T Environ Pollut; 2013 Aug; 179():53-60. PubMed ID: 23644276 [TBL] [Abstract][Full Text] [Related]
5. Transport characteristics of nanoscale zero-valent iron carried by three different "vehicles" in porous media. Su Y; Zhao YS; Li LL; Qin CY; Wu F; Geng NN; Lei JS J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(14):1639-52. PubMed ID: 25320851 [TBL] [Abstract][Full Text] [Related]
6. Mobility enhancement of nanoscale zero-valent iron in carbonate porous media through co-injection of polyelectrolytes. Laumann S; Micić V; Hofmann T Water Res; 2014 Mar; 50():70-9. PubMed ID: 24361704 [TBL] [Abstract][Full Text] [Related]
7. Transport of carbon colloid supported nanoscale zero-valent iron in saturated porous media. Busch J; Meißner T; Potthoff A; Oswald SE J Contam Hydrol; 2014 Aug; 164():25-34. PubMed ID: 24914524 [TBL] [Abstract][Full Text] [Related]
8. Straining of polyelectrolyte-stabilized nanoscale zero valent iron particles during transport through granular porous media. Raychoudhury T; Tufenkji N; Ghoshal S Water Res; 2014 Mar; 50():80-9. PubMed ID: 24361705 [TBL] [Abstract][Full Text] [Related]
9. Reduced transport potential of a palladium-doped zero valent iron nanoparticle in a water saturated loamy sand. Basnet M; Di Tommaso C; Ghoshal S; Tufenkji N Water Res; 2015 Jan; 68():354-63. PubMed ID: 25462742 [TBL] [Abstract][Full Text] [Related]
10. Assessment of transport of two polyelectrolyte-stabilized zero-valent iron nanoparticles in porous media. Raychoudhury T; Naja G; Ghoshal S J Contam Hydrol; 2010 Nov; 118(3-4):143-51. PubMed ID: 20937540 [TBL] [Abstract][Full Text] [Related]
11. Surface coating with Ca(OH)2 for improvement of the transport of nanoscale zero-valent iron (nZVI) in porous media. Wei CJ; Li XY Water Sci Technol; 2013; 68(10):2287-93. PubMed ID: 24292480 [TBL] [Abstract][Full Text] [Related]
12. Transport characteristics of surface-modified nanoscale zero-valent iron in porous media. Kanel SR; Choi H Water Sci Technol; 2007; 55(1-2):157-62. PubMed ID: 17305135 [TBL] [Abstract][Full Text] [Related]
13. Transport of sucrose-modified nanoscale zero-valent iron in saturated porous media: role of media size, injection rate and input concentration. Li H; Zhao YS; Han ZT; Hong M Water Sci Technol; 2015; 72(9):1463-71. PubMed ID: 26524436 [TBL] [Abstract][Full Text] [Related]
14. Enhanced transport of Si-coated nanoscale zero-valent iron particles in porous media. HonetschlÄgerová L; Janouškovcová P; Kubal M Environ Technol; 2016; 37(12):1530-8. PubMed ID: 26582314 [TBL] [Abstract][Full Text] [Related]
15. Chromate removal by surface-modified nanoscale zero-valent iron: Effect of different surface coatings and water chemistry. Dong H; He Q; Zeng G; Tang L; Zhang C; Xie Y; Zeng Y; Zhao F; Wu Y J Colloid Interface Sci; 2016 Jun; 471():7-13. PubMed ID: 26970032 [TBL] [Abstract][Full Text] [Related]
16. Dispersant-modified iron nanoparticles for mobility enhancement and TCE degradation: a comparison study. Peng YP; Chen TY; Wu CY; Chang YC; Chen KF Environ Sci Pollut Res Int; 2019 Nov; 26(33):34157-34166. PubMed ID: 30456616 [TBL] [Abstract][Full Text] [Related]
17. Impact of nZVI stability on mobility in porous media. Kocur CM; O'Carroll DM; Sleep BE J Contam Hydrol; 2013 Feb; 145():17-25. PubMed ID: 23261906 [TBL] [Abstract][Full Text] [Related]
18. Characteristics of two types of stabilized nano zero-valent iron and transport in porous media. Lin YH; Tseng HH; Wey MY; Lin MD Sci Total Environ; 2010 Apr; 408(10):2260-7. PubMed ID: 20163828 [TBL] [Abstract][Full Text] [Related]
19. Rhamnolipid biosurfactant and soy protein act as effective stabilizers in the aggregation and transport of palladium-doped zerovalent iron nanoparticles in saturated porous media. Basnet M; Ghoshal S; Tufenkji N Environ Sci Technol; 2013; 47(23):13355-64. PubMed ID: 24237158 [TBL] [Abstract][Full Text] [Related]
20. Transport of the arsenic (As)-loaded nano zero-valent iron in groundwater-saturated sand columns: Roles of surface modification and As loading. Yu Z; Hu L; Lo IMC Chemosphere; 2019 Feb; 216():428-436. PubMed ID: 30384313 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]