These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 26040963)
1. Effects of deer age on the physicochemical properties of deproteinized antler cancellous bone: an approach to optimize osteoconductivity of bone graft. Meng S; Zhang X; Xu M; Heng BC; Dai X; Mo X; Wei J; Wei Y; Deng X Biomed Mater; 2015 Jun; 10(3):035006. PubMed ID: 26040963 [TBL] [Abstract][Full Text] [Related]
2. Effects of compatibility of deproteinized antler cancellous bone with various bioactive factors on their osteogenic potential. Zhang X; Xu M; Song L; Wei Y; Lin Y; Liu W; Heng BC; Peng H; Wang Y; Deng X Biomaterials; 2013 Dec; 34(36):9103-14. PubMed ID: 24008040 [TBL] [Abstract][Full Text] [Related]
3. Osteoconductive effectiveness of bone graft derived from antler cancellous bone: an experimental study in the rabbit mandible defect model. Zhang X; Cai Q; Liu H; Heng BC; Peng H; Song Y; Yang Z; Deng X Int J Oral Maxillofac Surg; 2012 Nov; 41(11):1330-7. PubMed ID: 22704591 [TBL] [Abstract][Full Text] [Related]
4. Enhanced Osteogenic Behavior of ADSCs Produced by Deproteinized Antler Cancellous Bone and Evidence for Involvement of ERK Signaling Pathway. Wei J; Xu M; Zhang X; Meng S; Wang Y; Zhou T; Ma Q; Han B; Wei Y; Deng X Tissue Eng Part A; 2015 Jun; 21(11-12):1810-21. PubMed ID: 25760375 [TBL] [Abstract][Full Text] [Related]
5. Decellularized Antler Cancellous Bone Matrix Material Can Serve as Potential Bone Tissue Scaffold. Wang Y; Zong Y; Chen W; Diao N; Zhao Q; Li C; Jia B; Zhang M; Li J; Zhao Y; Du R; He Z Biomolecules; 2024 Jul; 14(8):. PubMed ID: 39199295 [TBL] [Abstract][Full Text] [Related]
6. Development of a bone substitute material based on alpha-tricalcium phosphate scaffold coated with carbonate apatite/poly-epsilon-caprolactone. Bang LT; Ramesh S; Purbolaksono J; Long BD; Chandran H; Ramesh S; Othman R Biomed Mater; 2015 Jul; 10(4):045011. PubMed ID: 26225725 [TBL] [Abstract][Full Text] [Related]
7. The improved biological response of shark tooth bioapatites in a comparative in vitro study with synthetic and bovine bone grafts. López-Álvarez M; Pérez-Davila S; Rodríguez-Valencia C; González P; Serra J Biomed Mater; 2016 Jun; 11(3):035011. PubMed ID: 27271863 [TBL] [Abstract][Full Text] [Related]
8. Mesenchymal stem cells from patients to assay bone graft substitutes. Manfrini M; Di Bona C; Canella A; Lucarelli E; Pellati A; D'Agostino A; Barbanti-Bròdano G; Tognon M J Cell Physiol; 2013 Jun; 228(6):1229-37. PubMed ID: 23129455 [TBL] [Abstract][Full Text] [Related]
9. Resorbable glass-ceramic phosphate-based scaffolds for bone tissue engineering: synthesis, properties, and in vitro effects on human marrow stromal cells. Vitale-Brovarone C; Ciapetti G; Leonardi E; Baldini N; Bretcanu O; Verné E; Baino F J Biomater Appl; 2011 Nov; 26(4):465-89. PubMed ID: 20566654 [TBL] [Abstract][Full Text] [Related]
10. Mineralization and bone regeneration using a bioactive elastin-like recombinamer membrane. Tejeda-Montes E; Klymov A; Nejadnik MR; Alonso M; Rodriguez-Cabello JC; Walboomers XF; Mata A Biomaterials; 2014 Sep; 35(29):8339-47. PubMed ID: 24996755 [TBL] [Abstract][Full Text] [Related]
11. Bone regeneration strategy inspired by the study of calcification behavior in deer antler. Shi H; Yu T; Li Z; Lu W; Zhang M; Ye J Mater Sci Eng C Mater Biol Appl; 2015 Dec; 57():67-76. PubMed ID: 26354241 [TBL] [Abstract][Full Text] [Related]
12. Poly-ε-caprolactone composite scaffolds for bone repair. Di Liddo R; Paganin P; Lora S; Dalzoppo D; Giraudo C; Miotto D; Tasso A; Barbon S; Artico M; Bianchi E; Parnigotto PP; Conconi MT; Grandi C Int J Mol Med; 2014 Dec; 34(6):1537-46. PubMed ID: 25319350 [TBL] [Abstract][Full Text] [Related]
13. Rat bone marrow stromal cells-seeded porous gelatin/tricalcium phosphate/oligomeric proanthocyanidins composite scaffold for bone repair. Chen KY; Chung CM; Chen YS; Bau DT; Yao CH J Tissue Eng Regen Med; 2013 Sep; 7(9):708-19. PubMed ID: 22392838 [TBL] [Abstract][Full Text] [Related]
14. Preparation, degradation, and calcification of biodegradable polyurethane foams for bone graft substitutes. Gorna K; Gogolewski S J Biomed Mater Res A; 2003 Dec; 67(3):813-27. PubMed ID: 14613229 [TBL] [Abstract][Full Text] [Related]
15. Identifying deer antler uhrf1 proliferation and s100a10 mineralization genes using comparative RNA-seq. Ker DFE; Wang D; Sharma R; Zhang B; Passarelli B; Neff N; Li C; Maloney W; Quake S; Yang YP Stem Cell Res Ther; 2018 Oct; 9(1):292. PubMed ID: 30376879 [TBL] [Abstract][Full Text] [Related]
16. Preparation and characterization of a multilayer biomimetic scaffold for bone tissue engineering. Kong L; Ao Q; Wang A; Gong K; Wang X; Lu G; Gong Y; Zhao N; Zhang X J Biomater Appl; 2007 Nov; 22(3):223-39. PubMed ID: 17255157 [TBL] [Abstract][Full Text] [Related]
17. Surface characterization and biological properties of regular dentin, demineralized dentin, and deproteinized dentin. Tabatabaei FS; Tatari S; Samadi R; Torshabi M J Mater Sci Mater Med; 2016 Nov; 27(11):164. PubMed ID: 27655430 [TBL] [Abstract][Full Text] [Related]
18. Conditioned media of deer antler stem cells accelerate regeneration of alveolar bone defects in rats. Guo Q; Zheng J; Lin H; Han Z; Wang Z; Ren J; Zhai J; Zhao H; Du R; Li C Cell Prolif; 2023 May; 56(5):e13454. PubMed ID: 36929672 [TBL] [Abstract][Full Text] [Related]
19. Three-dimensional printing of strontium-containing mesoporous bioactive glass scaffolds for bone regeneration. Zhang J; Zhao S; Zhu Y; Huang Y; Zhu M; Tao C; Zhang C Acta Biomater; 2014 May; 10(5):2269-81. PubMed ID: 24412143 [TBL] [Abstract][Full Text] [Related]
20. Preliminary study on the preparation of antler powder/chitosan/β-glycerophosphate sodium/polyvinyl alcohol porous hydrogel scaffolds and their osteogenic effects. Abudukelimu K; Aierken A; Tuerxuntayi A; Yilihamu Y; Abulizi S; Wufuer D; Dong H Front Bioeng Biotechnol; 2024; 12():1421718. PubMed ID: 38988866 [No Abstract] [Full Text] [Related] [Next] [New Search]