BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 26041201)

  • 1. Hydrogenolytic depolymerization of procyanidin polymers from hi-tannin sorghum bran.
    Li Z; Zeng J; Tong Z; Qi Y; Gu L
    Food Chem; 2015 Dec; 188():337-42. PubMed ID: 26041201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Depolymerization of cranberry procyanidins using (+)-catechin, (-)-epicatechin, and (-)-epigallocatechin gallate as chain breakers.
    Liu H; Zou T; Gao JM; Gu L
    Food Chem; 2013 Nov; 141(1):488-94. PubMed ID: 23768384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Procyanidin content of grape seed and pomace, and total anthocyanin content of grape pomace as affected by extrusion processing.
    Khanal RC; Howard LR; Prior RL
    J Food Sci; 2009 Aug; 74(6):H174-82. PubMed ID: 19723202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A semisynthetic approach for the simultaneous reaction of grape seed polymeric procyanidins with catechin and epicatechin to obtain oligomeric procyanidins in large scale.
    Bai R; Cui Y; Luo L; Yuan D; Wei Z; Yu W; Sun B
    Food Chem; 2019 Apr; 278():609-616. PubMed ID: 30583419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An approach for degradation of grape seed and skin proanthocyanidin polymers into oligomers by sulphurous acid.
    Luo L; Cui Y; Cheng J; Fang B; Wei Z; Sun B
    Food Chem; 2018 Aug; 256():203-211. PubMed ID: 29606439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrated Utilization of Red Radish for the Efficient Production of High-Purity Procyanidin Dimers.
    Jiang W; Zhou X; Yang Y; Zhou Z
    J Agric Food Chem; 2018 Sep; 66(35):9291-9300. PubMed ID: 29969257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Processing of sorghum (Sorghum bicolor) and sorghum products alters procyanidin oligomer and polymer distribution and content.
    Awika JM; Dykes L; Gu L; Rooney LW; Prior RL
    J Agric Food Chem; 2003 Aug; 51(18):5516-21. PubMed ID: 12926907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sorghum bran in the diet dose dependently increased the excretion of catechins and microbial-derived phenolic acids in female rats.
    Gu L; House SE; Rooney L; Prior RL
    J Agric Food Chem; 2007 Jun; 55(13):5326-34. PubMed ID: 17536823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid qualitative and quantitative analyses of proanthocyanidin oligomers and polymers by UPLC-MS/MS.
    Engström MT; Pälijärvi M; Fryganas C; Grabber JH; Mueller-Harvey I; Salminen JP
    J Agric Food Chem; 2014 Apr; 62(15):3390-9. PubMed ID: 24665824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Composition and cellular localization of tannins in Cabernet Sauvignon skins during growth.
    Gagné S; Saucier C; Gény L
    J Agric Food Chem; 2006 Dec; 54(25):9465-71. PubMed ID: 17147434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradation of (-)-epicatechin and procyanidin B2 in aqueous and lipidic model systems. first evidence of "chemical" flavan-3-ol oligomers in processed cocoa.
    De Taeye C; Cibaka ML; Jerkovic V; Collin S
    J Agric Food Chem; 2014 Sep; 62(36):9002-16. PubMed ID: 25167469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein-Tannin Interactions of Tryptic Digests of α-Lactalbumin and Procyanidins.
    Wang B; Heinonen M
    J Agric Food Chem; 2017 Jan; 65(1):148-155. PubMed ID: 27992196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Furanolysis with Menthofuran: A New Depolymerization Method for Analyzing Condensed Tannins.
    Billerach G; Rouméas L; Dubreucq E; Fulcrand H
    J Agric Food Chem; 2020 Mar; 68(10):2917-2926. PubMed ID: 31013083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distribution and quantification of flavan-3-ols and procyanidins with low degree of polymerization in nuts, cereals, and legumes.
    Bittner K; Rzeppa S; Humpf HU
    J Agric Food Chem; 2013 Sep; 61(38):9148-54. PubMed ID: 23971434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New procyanidin B3-human salivary protein complexes by mass spectrometry. Effect of salivary protein profile, tannin concentration, and time stability.
    Perez-Gregorio MR; Mateus N; De Freitas V
    J Agric Food Chem; 2014 Oct; 62(41):10038-45. PubMed ID: 25248720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of Commercial Proanthocyanidins. Part 6: Sulfitation of Flavan-3-Ols Catechin and Epicatechin, and Procyanidin B-3.
    Noreljaleel AEM; Wilhelm A; Bonnet SL
    Molecules; 2020 Oct; 25(21):. PubMed ID: 33126408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Depolymerisation optimisation of cranberry procyanidins and transport of resultant oligomers on monolayers of human intestinal epithelial Caco-2 cells.
    Ou K; Gu L
    Food Chem; 2015 Jan; 167():45-51. PubMed ID: 25148958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidation of Procyanidins with Various Degrees of Condensation: Influence on the Color-Deepening Phenomenon.
    Hibi Y; Yanase E
    J Agric Food Chem; 2019 May; 67(17):4940-4946. PubMed ID: 30994340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure elucidation of procyanidin oligomers by low-temperature 1H NMR spectroscopy.
    Esatbeyoglu T; Jaschok-Kentner B; Wray V; Winterhalter P
    J Agric Food Chem; 2011 Jan; 59(1):62-9. PubMed ID: 21141823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study on interaction between human salivary α-amylase and sorghum procyanidin tetramer: Binding characteristics and structural analysis.
    Zhao L; Wang F; Lu Q; Liu R; Tian J; Huang Y
    Int J Biol Macromol; 2018 Oct; 118(Pt A):1136-1141. PubMed ID: 30001600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.