These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 26041229)

  • 1. Biopolymer nanoparticles designed for polyunsaturated fatty acid vehiculization: Protein-polysaccharide ratio study.
    Perez AA; Sponton OE; Andermatten RB; Rubiolo AC; Santiago LG
    Food Chem; 2015 Dec; 188():543-50. PubMed ID: 26041229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biopolymer nanoparticles from heat-treated electrostatic protein-polysaccharide complexes: factors affecting particle characteristics.
    Jones OG; McClements DJ
    J Food Sci; 2010 Mar; 75(2):N36-43. PubMed ID: 20492252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. β-Lactoglobulin heat-induced aggregates as carriers of polyunsaturated fatty acids.
    Perez AA; Andermatten RB; Rubiolo AC; Santiago LG
    Food Chem; 2014 Sep; 158():66-72. PubMed ID: 24731315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of protein-polysaccharide nanoparticle fabrication methods: impact of biopolymer complexation before or after particle formation.
    Jones OG; Decker EA; McClements DJ
    J Colloid Interface Sci; 2010 Apr; 344(1):21-9. PubMed ID: 20045114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction mechanisms of peanut protein isolate and high methoxyl pectin with ultrasound treatment: The effect of ultrasound parameters, biopolymer ratio, and pH.
    Sun X; Ding L; Zhang L; Lai S; Chen F
    Food Chem; 2023 Dec; 429():136810. PubMed ID: 37442086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding of beta-lactoglobulin to pectins varying in their overall and local charge density.
    Sperber BL; Stuart MA; Schols HA; Voragen AG; Norde W
    Biomacromolecules; 2009 Dec; 10(12):3246-52. PubMed ID: 19904952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Core-shell biopolymer nanoparticles produced by electrostatic deposition of beet pectin onto heat-denatured beta-lactoglobulin aggregates.
    Santipanichwong R; Suphantharika M; Weiss J; McClements DJ
    J Food Sci; 2008 Aug; 73(6):N23-30. PubMed ID: 19241582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Linoleic acid binding properties of ovalbumin nanoparticles.
    Sponton OE; Perez AA; Carrara CR; Santiago LG
    Colloids Surf B Biointerfaces; 2015 Apr; 128():219-226. PubMed ID: 25701117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complexation of high methoxyl pectin with ethanol desolvated whey protein nanoparticles: physico-chemical properties and encapsulation behaviour.
    Gülseren I; Fang Y; Corredig M
    Food Funct; 2012 Aug; 3(8):859-66. PubMed ID: 22669210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transient measurement and structure analysis of protein-polysaccharide multilayers at fluid interfaces.
    Bertsch P; Thoma A; Bergfreund J; Geue T; Fischer P
    Soft Matter; 2019 Aug; 15(31):6362-6368. PubMed ID: 31298681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Composition and rheological properties of beta-Lactoglobulin/pectin coacervates: effects of salt concentration and initial protein/polysaccharide ratio.
    Wang X; Lee J; Wang YW; Huang Q
    Biomacromolecules; 2007 Mar; 8(3):992-7. PubMed ID: 17305391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of limited enzymatic hydrolysis on linoleic acid binding properties of β-lactoglobulin.
    Sponton OE; Perez AA; Carrara C; Santiago LG
    Food Chem; 2014 Mar; 146():577-82. PubMed ID: 24176383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication and morphological characterization of biopolymer particles formed by electrostatic complexation of heat treated lactoferrin and anionic polysaccharides.
    Peinado I; Lesmes U; Andrés A; McClements JD
    Langmuir; 2010 Jun; 26(12):9827-34. PubMed ID: 20229991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface adsorption behaviour of milk whey protein and pectin mixtures under conditions of air-water interface saturation.
    Perez AA; Sánchez CC; Patino JM; Rubiolo AC; Santiago LG
    Colloids Surf B Biointerfaces; 2011 Jul; 85(2):306-15. PubMed ID: 21440425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication, structural characterization and functional attributes of polysaccharide-surfactant-protein ternary complexes for delivery of curcumin.
    Guo Q; Su J; Shu X; Yuan F; Mao L; Liu J; Gao Y
    Food Chem; 2021 Feb; 337():128019. PubMed ID: 32927227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laccase mediated conjugation of heat treated β-lactoglobulin and sugar beet pectin.
    Jung J; Wicker L
    Carbohydr Polym; 2012 Aug; 89(4):1244-9. PubMed ID: 24750938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions between beta-lactoglobulin and pectins during in vitro gastric hydrolysis.
    Nacer A; Sanchez C; Villaume C; Mejean L; Mouecoucou J
    J Agric Food Chem; 2004 Jan; 52(2):355-60. PubMed ID: 14733521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Core-shell biopolymer nanoparticle delivery systems: synthesis and characterization of curcumin fortified zein-pectin nanoparticles.
    Hu K; Huang X; Gao Y; Huang X; Xiao H; McClements DJ
    Food Chem; 2015 Sep; 182():275-81. PubMed ID: 25842338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of whey protein-pectin nano-complex carriers for loading of lactoferrin.
    Raei M; Shahidi F; Farhoodi M; Jafari SM; Rafe A
    Int J Biol Macromol; 2017 Dec; 105(Pt 1):281-291. PubMed ID: 28693995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the interactions of a cationic surfactant (lauric arginate) with an anionic biopolymer (pectin): isothermal titration calorimetry, light scattering, and microelectrophoresis.
    Asker D; Weiss J; McClements DJ
    Langmuir; 2009 Jan; 25(1):116-22. PubMed ID: 19067576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.