These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 26041272)

  • 1. Selective visual scaling of time-scale processes facilitates broadband learning of isometric force frequency tracking.
    King AC; Newell KM
    Atten Percept Psychophys; 2015 Oct; 77(7):2507-18. PubMed ID: 26041272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptation to selective visual scaling of short time scale processes in isometric force.
    Hu X; Newell KM
    Neurosci Lett; 2010 Jan; 469(1):131-4. PubMed ID: 19944745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Practice and transfer of the frequency structures of continuous isometric force.
    King AC; Newell KM
    Hum Mov Sci; 2014 Apr; 34():28-40. PubMed ID: 24704802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential time scales of change to learning frequency structures of isometric force tracking.
    Studenka BE; King AC; Newell KM
    J Exp Psychol Hum Percept Perform; 2014 Aug; 40(4):1629-40. PubMed ID: 24911014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adapting relative phase of bimanual isometric force coordination through scaling visual information intermittency.
    Lafe CW; Pacheco MM; Newell KM
    Hum Mov Sci; 2016 Jun; 47():186-196. PubMed ID: 27017544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bimanual coordination and the intermittency of visual information in isometric force tracking.
    Lafe CW; Pacheco MM; Newell KM
    Exp Brain Res; 2016 Jul; 234(7):2025-2034. PubMed ID: 26960740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The learning of isometric force time scales is differentially influenced by constant and variable practice.
    King AC; Newell KM
    Exp Brain Res; 2013 Jun; 227(2):149-59. PubMed ID: 23625075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perceptual influences of error size on voluntary force control during a compound sinusoidal force task.
    Chen YC; Lin YT; Chang GC; Hwang IS
    Hum Mov Sci; 2017 Dec; 56(Pt B):46-53. PubMed ID: 29101823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intermittency in the control of continuous force production.
    Slifkin AB; Vaillancourt DE; Newell KM
    J Neurophysiol; 2000 Oct; 84(4):1708-18. PubMed ID: 11024063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Task goal and grip force dynamics.
    Jordan K; Newell KM
    Exp Brain Res; 2004 Jun; 156(4):451-7. PubMed ID: 14968275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvements in force variability and structure from vision- to memory-guided submaximal isometric knee extension in subacute stroke.
    Chow JW; Stokic DS
    J Appl Physiol (1985); 2018 Mar; 124(3):592-603. PubMed ID: 29097632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visual information about past, current and future properties of irregular target paths in isometric force tracking.
    Mazich MM; Studenka BE; Newell KM
    Atten Percept Psychophys; 2015 Jan; 77(1):329-39. PubMed ID: 25214307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Task-related changes in sensorimotor integration influence the common synaptic input to motor neurones.
    Laine CM; Yavuz SU; Farina D
    Acta Physiol (Oxf); 2014 May; 211(1):229-39. PubMed ID: 24620727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integration of visual feedback and motor learning: Corticospinal vs. corticobulbar pathway.
    Park SH; Casamento-Moran A; Singer ML; Ernster AE; Yacoubi B; Humbert IA; Christou EA
    Hum Mov Sci; 2018 Apr; 58():88-96. PubMed ID: 29353095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Information and force level interact in regulating force output during two and three digit grip configurations.
    Sosnoff JJ; Jordan K; Newell KM
    Exp Brain Res; 2005 Nov; 167(1):76-85. PubMed ID: 16025291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Motor output oscillations with magnification of visual feedback in older adults.
    Park SH; Kwon M; Christou EA
    Neurosci Lett; 2017 Apr; 647():8-13. PubMed ID: 28300635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial resolution of visual feedback affects variability and structure of isometric force.
    Kuznetsov NA; Riley MA
    Neurosci Lett; 2010 Feb; 470(2):121-5. PubMed ID: 20045718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discrete bandwidth visual feedback increases structure of output as compared to continuous visual feedback in isometric force control tasks.
    Schiffman JM; Luchies CW; Piscitelle L; Hasselquist L; Gregorczyk KN
    Clin Biomech (Bristol, Avon); 2006 Dec; 21(10):1042-50. PubMed ID: 16942820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intermittent visual information and the multiple time scales of visual motor control of continuous isometric force production.
    Sosnoff JJ; Newell KM
    Percept Psychophys; 2005 Feb; 67(2):335-44. PubMed ID: 15971695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-range correlations in motor unit discharge times at low forces are modulated by visual gain and age.
    Jordan K; Jesunathadas M; Sarchet DM; Enoka RM
    Exp Physiol; 2013 Feb; 98(2):546-55. PubMed ID: 22983995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.