BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

531 related articles for article (PubMed ID: 26041448)

  • 1. Acute SGLT inhibition normalizes O2 tension in the renal cortex but causes hypoxia in the renal medulla in anaesthetized control and diabetic rats.
    O'Neill J; Fasching A; Pihl L; Patinha D; Franzén S; Palm F
    Am J Physiol Renal Physiol; 2015 Aug; 309(3):F227-34. PubMed ID: 26041448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nephron pO2 and renal oxygen usage in the hypertensive rat kidney.
    Welch WJ; Baumgärtl H; Lübbers D; Wilcox CS
    Kidney Int; 2001 Jan; 59(1):230-7. PubMed ID: 11135075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicted consequences of diabetes and SGLT inhibition on transport and oxygen consumption along a rat nephron.
    Layton AT; Vallon V; Edwards A
    Am J Physiol Renal Physiol; 2016 Jun; 310(11):F1269-83. PubMed ID: 26764207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endothelin type A receptor inhibition normalises intrarenal hypoxia in rats used as a model of type 1 diabetes by improving oxygen delivery.
    Franzén S; Palm F
    Diabetologia; 2015 Oct; 58(10):2435-42. PubMed ID: 26173672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased renal metabolism in diabetes. Mechanism and functional implications.
    Körner A; Eklöf AC; Celsi G; Aperia A
    Diabetes; 1994 May; 43(5):629-33. PubMed ID: 8168637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anemia increases the risk of renal cortical and medullary hypoxia during cardiopulmonary bypass.
    Darby PJ; Kim N; Hare GM; Tsui A; Wang Z; Harrington A; Mazer CD
    Perfusion; 2013 Nov; 28(6):504-11. PubMed ID: 23719516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Renal cortical oxygen tension is decreased following exposure to long-term but not short-term intermittent hypoxia in the rat.
    O'Neill J; Jasionek G; Drummond SE; Brett O; Lucking EF; Abdulla MA; O'Halloran KD
    Am J Physiol Renal Physiol; 2019 Apr; 316(4):F635-F645. PubMed ID: 30648908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling oxygen consumption in the proximal tubule: effects of NHE and SGLT2 inhibition.
    Layton AT; Vallon V; Edwards A
    Am J Physiol Renal Physiol; 2015 Jun; 308(12):F1343-57. PubMed ID: 25855513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determinants of intrarenal oxygenation. I. Effects of diuretics.
    Brezis M; Agmon Y; Epstein FH
    Am J Physiol; 1994 Dec; 267(6 Pt 2):F1059-62. PubMed ID: 7810692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proinsulin C-peptide reduces diabetes-induced glomerular hyperfiltration via efferent arteriole dilation and inhibition of tubular sodium reabsorption.
    Nordquist L; Brown R; Fasching A; Persson P; Palm F
    Am J Physiol Renal Physiol; 2009 Nov; 297(5):F1265-72. PubMed ID: 19741019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of furosemide on renal oxygen consumption after ischemia in normal and streptozotocin diabetic rats.
    Kuramochi G; Homma S
    Nephron; 1993; 64(3):436-42. PubMed ID: 8341390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metformin attenuates renal medullary hypoxia in diabetic nephropathy through inhibition uncoupling protein-2.
    Christensen M; Schiffer TA; Gustafsson H; Krag SP; Nørregaard R; Palm F
    Diabetes Metab Res Rev; 2019 Feb; 35(2):e3091. PubMed ID: 30345618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contribution of hyperglycemia on diabetic complications in obese type 2 diabetic SDT fatty rats: effects of SGLT inhibitor phlorizin.
    Katsuda Y; Sasase T; Tadaki H; Mera Y; Motohashi Y; Kemmochi Y; Toyoda K; Kakimoto K; Kume S; Ohta T
    Exp Anim; 2015; 64(2):161-9. PubMed ID: 25736710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acute intrarenal angiotensin (1-7) infusion decreases diabetes-induced glomerular hyperfiltration but increases kidney oxygen consumption in the rat.
    Persson P; Fasching A; Palm F
    Acta Physiol (Oxf); 2019 May; 226(1):e13254. PubMed ID: 30635985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solute transport and oxygen consumption along the nephrons: effects of Na+ transport inhibitors.
    Layton AT; Laghmani K; Vallon V; Edwards A
    Am J Physiol Renal Physiol; 2016 Dec; 311(6):F1217-F1229. PubMed ID: 27707706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of sodium glucose linked cotransporter-2 inhibition on renal microvascular oxygen tension in a rodent model of diabetes mellitus.
    Hare GMT; Zhang Y; Chin K; Thai K; Jacobs E; Cazorla-Bak MP; Nghiem L; Wilson DF; Vinogradov SA; Connelly KA; Mazer CD; Evans RG; Gilbert RE
    Physiol Rep; 2021 Jun; 9(12):e14890. PubMed ID: 34184431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Postischemic recovery process of renal oxygen consumption in normal and streptozotocin diabetic rats.
    Kuramochi G; Homma S
    Ren Fail; 1993; 15(5):587-94. PubMed ID: 8290704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxygen-dependent inhibition of respiration in isolated renal tubules by nitric oxide.
    Koivisto A; Pittner J; Froelich M; Persson AE
    Kidney Int; 1999 Jun; 55(6):2368-75. PubMed ID: 10354284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactive oxygen species cause diabetes-induced decrease in renal oxygen tension.
    Palm F; Cederberg J; Hansell P; Liss P; Carlsson PO
    Diabetologia; 2003 Aug; 46(8):1153-60. PubMed ID: 12879251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased kidney metabolism as a pathway to kidney tissue hypoxia and damage: effects of triiodothyronine and dinitrophenol in normoglycemic rats.
    Friederich-Persson M; Persson P; Fasching A; Hansell P; Nordquist L; Palm F
    Adv Exp Med Biol; 2013; 789():9-14. PubMed ID: 23852470
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.