BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

533 related articles for article (PubMed ID: 26041448)

  • 21. A computational model for simulating solute transport and oxygen consumption along the nephrons.
    Layton AT; Vallon V; Edwards A
    Am J Physiol Renal Physiol; 2016 Dec; 311(6):F1378-F1390. PubMed ID: 27707705
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Energy requirement of sodium reabsorption in the thick ascending limb of Henle's loop in the dog kidney: effects of bumetanide and ouabain.
    Ostensen J; Stokke ES
    Acta Physiol Scand; 1996 Jun; 157(2):275-81. PubMed ID: 8800369
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Disparate mechanisms for hypoxic cell injury in different nephron segments. Studies in the isolated perfused rat kidney.
    Brezis M; Shanley P; Silva P; Spokes K; Lear S; Epstein FH; Rosen S
    J Clin Invest; 1985 Nov; 76(5):1796-806. PubMed ID: 4056054
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Roles of oxidative stress and AT1 receptors in renal hemodynamics and oxygenation in the postclipped 2K,1C kidney.
    Welch WJ; Mendonca M; Aslam S; Wilcox CS
    Hypertension; 2003 Mar; 41(3 Pt 2):692-6. PubMed ID: 12623981
    [TBL] [Abstract][Full Text] [Related]  

  • 25. NADPH oxidase inhibition reduces tubular sodium transport and improves kidney oxygenation in diabetes.
    Persson P; Hansell P; Palm F
    Am J Physiol Regul Integr Comp Physiol; 2012 Jun; 302(12):R1443-9. PubMed ID: 22552796
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impacts of nitric oxide and superoxide on renal medullary oxygen transport and urine concentration.
    Fry BC; Edwards A; Layton AT
    Am J Physiol Renal Physiol; 2015 May; 308(9):F967-80. PubMed ID: 25651567
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gamma-linolenic acid restores renal medullary thick ascending limb Na(+),K(+)-ATPase activity in diabetic rats.
    Tsimaratos M; Coste TC; Djemli-Shipkolye A; Vague P; Pieroni G; Raccah D
    J Nutr; 2001 Dec; 131(12):3160-5. PubMed ID: 11739860
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of long-term type 1 diabetes on renal sodium and water transporters in rats.
    Vidotti DB; Arnoni CP; Maquigussa E; Boim MA
    Am J Nephrol; 2008; 28(1):107-14. PubMed ID: 17943018
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Primary proximal tubule hyperreabsorption and impaired tubular transport counterregulation determine glomerular hyperfiltration in diabetes: a modeling analysis.
    Hallow KM; Gebremichael Y; Helmlinger G; Vallon V
    Am J Physiol Renal Physiol; 2017 May; 312(5):F819-F835. PubMed ID: 28148531
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SGLT2 inhibition in a kidney with reduced nephron number: modeling and analysis of solute transport and metabolism.
    Layton AT; Vallon V
    Am J Physiol Renal Physiol; 2018 May; 314(5):F969-F984. PubMed ID: 29361669
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Determinants of intrarenal oxygenation. II. Hemodynamic effects.
    Brezis M; Heyman SN; Epstein FH
    Am J Physiol; 1994 Dec; 267(6 Pt 2):F1063-8. PubMed ID: 7810693
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of renal hypertrophy and increased renal Na,K-ATPase in streptozotocin-diabetic rats.
    Ku DD; Sellers BM; Meezan E
    Endocrinology; 1986 Aug; 119(2):672-9. PubMed ID: 3015553
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hypoxia in the diabetic kidney is independent of advanced glycation end-products.
    Nordquist L; Liss P; Fasching A; Hansell P; Palm F
    Adv Exp Med Biol; 2013; 765():185-193. PubMed ID: 22879032
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reduced nitric oxide in diabetic kidneys due to increased hepatic arginine metabolism: implications for renomedullary oxygen availability.
    Palm F; Friederich M; Carlsson PO; Hansell P; Teerlink T; Liss P
    Am J Physiol Renal Physiol; 2008 Jan; 294(1):F30-7. PubMed ID: 17942569
    [TBL] [Abstract][Full Text] [Related]  

  • 35. L-Citrulline, but not L-arginine, prevents diabetes mellitus-induced glomerular hyperfiltration and proteinuria in rat.
    Persson P; Fasching A; Teerlink T; Hansell P; Palm F
    Hypertension; 2014 Aug; 64(2):323-9. PubMed ID: 24866144
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Detection of glucagon receptor mRNA in the rat proximal tubule: potential role for glucagon in the control of renal glucose transport.
    Marks J; Debnam ES; Dashwood MR; Srai SK; Unwin RJ
    Clin Sci (Lond); 2003 Mar; 104(3):253-8. PubMed ID: 12605582
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Renal oxygenation in acute renal ischemia-reperfusion injury.
    Abdelkader A; Ho J; Ow CP; Eppel GA; Rajapakse NW; Schlaich MP; Evans RG
    Am J Physiol Renal Physiol; 2014 May; 306(9):F1026-38. PubMed ID: 24598805
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of adenosine on intrarenal oxygenation.
    Dinour D; Brezis M
    Am J Physiol; 1991 Nov; 261(5 Pt 2):F787-91. PubMed ID: 1951710
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Do effects of sodium-glucose cotransporter-2 inhibitors in patients with diabetes give insight into potential use in non-diabetic kidney disease?
    Rajasekeran H; Cherney DZ; Lovshin JA
    Curr Opin Nephrol Hypertens; 2017 Sep; 26(5):358-367. PubMed ID: 28582367
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Furosemide reverses medullary tissue hypoxia in ovine septic acute kidney injury.
    Iguchi N; Lankadeva YR; Mori TA; Osawa EA; Cutuli SL; Evans RG; Bellomo R; May CN
    Am J Physiol Regul Integr Comp Physiol; 2019 Aug; 317(2):R232-R239. PubMed ID: 31141418
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.