These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 26041729)

  • 1. Reconstruction of recurrent synaptic connectivity of thousands of neurons from simulated spiking activity.
    Zaytsev YV; Morrison A; Deger M
    J Comput Neurosci; 2015 Aug; 39(1):77-103. PubMed ID: 26041729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic effective connectivity in cortically embedded systems of recurrently coupled synfire chains.
    Trengove C; Diesmann M; van Leeuwen C
    J Comput Neurosci; 2016 Feb; 40(1):1-26. PubMed ID: 26560334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synconset waves and chains: spiking onsets in synchronous populations predict and are predicted by network structure.
    Raghavan M; Amrutur B; Narayanan R; Sikdar SK
    PLoS One; 2013; 8(10):e74910. PubMed ID: 24116018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of network topology on inference of synaptic connectivity from multi-neuronal spike data simulated by a large-scale cortical network model.
    Kobayashi R; Kitano K
    J Comput Neurosci; 2013 Aug; 35(1):109-24. PubMed ID: 23388860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Total spiking probability edges: A cross-correlation based method for effective connectivity estimation of cortical spiking neurons.
    De Blasi S; Ciba M; Bahmer A; Thielemann C
    J Neurosci Methods; 2019 Jan; 312():169-181. PubMed ID: 30500352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ensemble learning and ground-truth validation of synaptic connectivity inferred from spike trains.
    Donner C; Bartram J; Hornauer P; Kim T; Roqueiro D; Hierlemann A; Obozinski G; Schröter M
    PLoS Comput Biol; 2024 Apr; 20(4):e1011964. PubMed ID: 38683881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-Organization of Microcircuits in Networks of Spiking Neurons with Plastic Synapses.
    Ocker GK; Litwin-Kumar A; Doiron B
    PLoS Comput Biol; 2015 Aug; 11(8):e1004458. PubMed ID: 26291697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Attractor dynamics in local neuronal networks.
    Thivierge JP; Comas R; Longtin A
    Front Neural Circuits; 2014; 8():22. PubMed ID: 24688457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-capacity embedding of synfire chains in a cortical network model.
    Trengove C; van Leeuwen C; Diesmann M
    J Comput Neurosci; 2013 Apr; 34(2):185-209. PubMed ID: 22878688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward on-chip functional neuronal networks: computational study on the effect of synaptic connectivity on neural activity.
    Foroushani AN; Ghafar-Zadeh E
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1553-6. PubMed ID: 25570267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the use of dynamic Bayesian networks in reconstructing functional neuronal networks from spike train ensembles.
    Eldawlatly S; Zhou Y; Jin R; Oweiss KG
    Neural Comput; 2010 Jan; 22(1):158-89. PubMed ID: 19852619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Higher-Order Synaptic Interactions Coordinate Dynamics in Recurrent Networks.
    Chambers B; MacLean JN
    PLoS Comput Biol; 2016 Aug; 12(8):e1005078. PubMed ID: 27542093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlations in spiking neuronal networks with distance dependent connections.
    Kriener B; Helias M; Aertsen A; Rotter S
    J Comput Neurosci; 2009 Oct; 27(2):177-200. PubMed ID: 19568923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gradient learning in spiking neural networks by dynamic perturbation of conductances.
    Fiete IR; Seung HS
    Phys Rev Lett; 2006 Jul; 97(4):048104. PubMed ID: 16907616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spontaneous dynamics of asymmetric random recurrent spiking neural networks.
    Soula H; Beslon G; Mazet O
    Neural Comput; 2006 Jan; 18(1):60-79. PubMed ID: 16354381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linking structure and activity in nonlinear spiking networks.
    Ocker GK; Josić K; Shea-Brown E; Buice MA
    PLoS Comput Biol; 2017 Jun; 13(6):e1005583. PubMed ID: 28644840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computing with networks of spiking neurons on a biophysically motivated floating-gate based neuromorphic integrated circuit.
    Brink S; Nease S; Hasler P
    Neural Netw; 2013 Sep; 45():39-49. PubMed ID: 23541925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Constructing Precisely Computing Networks with Biophysical Spiking Neurons.
    Schwemmer MA; Fairhall AL; Denéve S; Shea-Brown ET
    J Neurosci; 2015 Jul; 35(28):10112-34. PubMed ID: 26180189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of cellular homeostatic intrinsic plasticity on dynamical and computational properties of biological recurrent neural networks.
    Naudé J; Cessac B; Berry H; Delord B
    J Neurosci; 2013 Sep; 33(38):15032-43. PubMed ID: 24048833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Approximating Nonlinear Functions With Latent Boundaries in Low-Rank Excitatory-Inhibitory Spiking Networks.
    Podlaski WF; Machens CK
    Neural Comput; 2024 Apr; 36(5):803-857. PubMed ID: 38658028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.