BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 26041773)

  • 1. Sequence-based Network Completion Reveals the Integrality of Missing Reactions in Metabolic Networks.
    Krumholz EW; Libourel IG
    J Biol Chem; 2015 Jul; 290(31):19197-207. PubMed ID: 26041773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Meneco, a Topology-Based Gap-Filling Tool Applicable to Degraded Genome-Wide Metabolic Networks.
    Prigent S; Frioux C; Dittami SM; Thiele S; Larhlimi A; Collet G; Gutknecht F; Got J; Eveillard D; Bourdon J; Plewniak F; Tonon T; Siegel A
    PLoS Comput Biol; 2017 Jan; 13(1):e1005276. PubMed ID: 28129330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide metabolic network reconstruction of the picoalga Ostreococcus.
    Krumholz EW; Yang H; Weisenhorn P; Henry CS; Libourel IG
    J Exp Bot; 2012 Mar; 63(6):2353-62. PubMed ID: 22207618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discovering missing reactions of metabolic networks by using gene co-expression data.
    Hosseini Z; Marashi SA
    Sci Rep; 2017 Feb; 7():41774. PubMed ID: 28150713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gap-filling analysis of the iJO1366 Escherichia coli metabolic network reconstruction for discovery of metabolic functions.
    Orth JD; Palsson B
    BMC Syst Biol; 2012 May; 6():30. PubMed ID: 22548736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Likelihood-based gene annotations for gap filling and quality assessment in genome-scale metabolic models.
    Benedict MN; Mundy MB; Henry CS; Chia N; Price ND
    PLoS Comput Biol; 2014 Oct; 10(10):e1003882. PubMed ID: 25329157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A workflow for annotating the knowledge gaps in metabolic reconstructions using known and hypothetical reactions.
    Vayena E; Chiappino-Pepe A; MohammadiPeyhani H; Francioli Y; Hadadi N; Ataman M; Hafner J; Pavlou S; Hatzimanikatis V
    Proc Natl Acad Sci U S A; 2022 Nov; 119(46):e2211197119. PubMed ID: 36343249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How accurate is automated gap filling of metabolic models?
    Karp PD; Weaver D; Latendresse M
    BMC Syst Biol; 2018 Jun; 12(1):73. PubMed ID: 29914471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advances in gap-filling genome-scale metabolic models and model-driven experiments lead to novel metabolic discoveries.
    Pan S; Reed JL
    Curr Opin Biotechnol; 2018 Jun; 51():103-108. PubMed ID: 29278837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MIRAGE: a functional genomics-based approach for metabolic network model reconstruction and its application to cyanobacteria networks.
    Vitkin E; Shlomi T
    Genome Biol; 2012 Nov; 13(11):R111. PubMed ID: 23194418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated generation of genome-scale metabolic draft reconstructions based on KEGG.
    Karlsen E; Schulz C; Almaas E
    BMC Bioinformatics; 2018 Dec; 19(1):467. PubMed ID: 30514205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward the automated generation of genome-scale metabolic networks in the SEED.
    DeJongh M; Formsma K; Boillot P; Gould J; Rycenga M; Best A
    BMC Bioinformatics; 2007 Apr; 8():139. PubMed ID: 17462086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematizing the generation of missing metabolic knowledge.
    Orth JD; Palsson BØ
    Biotechnol Bioeng; 2010 Oct; 107(3):403-12. PubMed ID: 20589842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficiently gap-filling reaction networks.
    Latendresse M
    BMC Bioinformatics; 2014 Jun; 15():225. PubMed ID: 24972703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Teasing out missing reactions in genome-scale metabolic networks through hypergraph learning.
    Chen C; Liao C; Liu YY
    Nat Commun; 2023 Apr; 14(1):2375. PubMed ID: 37185345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An algorithm for the reduction of genome-scale metabolic network models to meaningful core models.
    Erdrich P; Steuer R; Klamt S
    BMC Syst Biol; 2015 Aug; 9():48. PubMed ID: 26286864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental versatility promotes modularity in genome-scale metabolic networks.
    Samal A; Wagner A; Martin OC
    BMC Syst Biol; 2011 Aug; 5():135. PubMed ID: 21864340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining multiple functional annotation tools increases coverage of metabolic annotation.
    Griesemer M; Kimbrel JA; Zhou CE; Navid A; D'haeseleer P
    BMC Genomics; 2018 Dec; 19(1):948. PubMed ID: 30567498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model-enabled gene search (MEGS) allows fast and direct discovery of enzymatic and transport gene functions in the marine bacterium
    Pan S; Nikolakakis K; Adamczyk PA; Pan M; Ruby EG; Reed JL
    J Biol Chem; 2017 Jun; 292(24):10250-10261. PubMed ID: 28446608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An integrative approach towards completing genome-scale metabolic networks.
    Christian N; May P; Kempa S; Handorf T; Ebenhöh O
    Mol Biosyst; 2009 Dec; 5(12):1889-903. PubMed ID: 19763335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.