These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 26041833)

  • 1. A temperature rise reduces trial-to-trial variability of locust auditory neuron responses.
    Eberhard MJ; Schleimer JH; Schreiber S; Ronacher B
    J Neurophysiol; 2015 Sep; 114(3):1424-37. PubMed ID: 26041833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature dependence of temporal resolution in an insect nervous system.
    Franz A; Ronacher B
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 May; 188(4):261-71. PubMed ID: 12012097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature effects on the tympanal membrane and auditory receptor neurons in the locust.
    Eberhard MJ; Gordon SD; Windmill JF; Ronacher B
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2014 Sep; 200(9):837-47. PubMed ID: 25048563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Channel noise from both slow adaptation currents and fast currents is required to explain spike-response variability in a sensory neuron.
    Fisch K; Schwalger T; Lindner B; Herz AV; Benda J
    J Neurosci; 2012 Nov; 32(48):17332-44. PubMed ID: 23197724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spike-timing precision underlies the coding efficiency of auditory receptor neurons.
    Rokem A; Watzl S; Gollisch T; Stemmler M; Herz AV; Samengo I
    J Neurophysiol; 2006 Apr; 95(4):2541-52. PubMed ID: 16354733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Response recovery in the locust auditory pathway.
    Wirtssohn S; Ronacher B
    J Neurophysiol; 2016 Jan; 115(1):510-9. PubMed ID: 26609115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Representation of acoustic communication signals by insect auditory receptor neurons.
    Machens CK; Stemmler MB; Prinz P; Krahe R; Ronacher B; Herz AV
    J Neurosci; 2001 May; 21(9):3215-27. PubMed ID: 11312306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal integration at consecutive processing stages in the auditory pathway of the grasshopper.
    Wirtssohn S; Ronacher B
    J Neurophysiol; 2015 Apr; 113(7):2280-8. PubMed ID: 25609104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variability of spike trains and the processing of temporal patterns of acoustic signals-problems, constraints, and solutions.
    Ronacher B; Franz A; Wohlgemuth S; Hennig RM
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2004 Apr; 190(4):257-77. PubMed ID: 14872260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane properties that shape the auditory code in three nuclei of the central nervous system.
    Schwarz DW; Tennigkeit F; Adam T; Finlayson P; Puil E
    J Otolaryngol; 1998 Dec; 27(6):311-7. PubMed ID: 9857314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell-intrinsic mechanisms of temperature compensation in a grasshopper sensory receptor neuron.
    Roemschied FA; Eberhard MJ; Schleimer JH; Ronacher B; Schreiber S
    Elife; 2014 May; 3():e02078. PubMed ID: 24843016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporal modulation transfer functions in auditory receptor fibres of the locust ( Locusta migratoria L.).
    Prinz P; Ronacher B
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 Aug; 188(7):577-87. PubMed ID: 12209345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analytical description of coincidence detection synaptic mechanisms in the auditory pathway.
    Toth PG; Marsalek P
    Biosystems; 2015 Oct; 136():90-8. PubMed ID: 26190796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Channel-noise-induced stochastic facilitation in an auditory brainstem neuron model.
    Schmerl BA; McDonnell MD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052722. PubMed ID: 24329311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increase of neuronal response variability at higher processing levels as revealed by simultaneous recordings.
    Vogel A; Hennig RM; Ronacher B
    J Neurophysiol; 2005 Jun; 93(6):3548-59. PubMed ID: 15716366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multielectrode recordings from auditory neurons in the brain of a small grasshopper.
    Bhavsar MB; Heinrich R; Stumpner A
    J Neurosci Methods; 2015 Dec; 256():63-73. PubMed ID: 26335799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural correlations increase between consecutive processing levels in the auditory system of locusts.
    Vogel A; Ronacher B
    J Neurophysiol; 2007 May; 97(5):3376-85. PubMed ID: 17360818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A physiological model for the stimulus dependence of first-spike latency of auditory-nerve fibers.
    Neubauer H; Heil P
    Brain Res; 2008 Jul; 1220():208-23. PubMed ID: 17936252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spike-train variability of auditory neurons in vivo: dynamic responses follow predictions from constant stimuli.
    Schaette R; Gollisch T; Herz AV
    J Neurophysiol; 2005 Jun; 93(6):3270-81. PubMed ID: 15689392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Auditory discrimination of amplitude modulations based on metric distances of spike trains.
    Wohlgemuth S; Ronacher B
    J Neurophysiol; 2007 Apr; 97(4):3082-92. PubMed ID: 17314239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.