These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 26042004)

  • 1. Motor imagery: lessons learned in movement science might be applicable for spaceflight.
    Bock O; Schott N; Papaxanthis C
    Front Syst Neurosci; 2015; 9():75. PubMed ID: 26042004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Motor imagery of body movements that can't be executed on Earth.
    Kalicinski M; Bock O; Schott N
    J Vestib Res; 2017; 27(4):217-223. PubMed ID: 29081428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Postflight reconditioning for European Astronauts - A case report of recovery after six months in space.
    Petersen N; Lambrecht G; Scott J; Hirsch N; Stokes M; Mester J
    Musculoskelet Sci Pract; 2017 Jan; 27 Suppl 1():S23-S31. PubMed ID: 28173929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensorimotor adaptation of point-to-point arm movements after spaceflight: the role of internal representation of gravity force in trajectory planning.
    Gaveau J; Paizis C; Berret B; Pozzo T; Papaxanthis C
    J Neurophysiol; 2011 Aug; 106(2):620-9. PubMed ID: 21562193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of body fluid volume and electrolyte concentrations in spaceflight.
    Smith SM; Krauhs JM; Leach CS
    Adv Space Biol Med; 1997; 6():123-65. PubMed ID: 9048137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mission-critical tasks for assessing risks from vestibular and sensorimotor adaptation during space exploration.
    Clément G; Moudy SC; Macaulay TR; Bishop MO; Wood SJ
    Front Physiol; 2022; 13():1029161. PubMed ID: 36505047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human performance during spaceflight.
    Manzey D; Lorenz B
    Hum Perf Extrem Environ; 1999 Apr; 4(1):8-13. PubMed ID: 12182201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Benefits of Motor Imagery for Human Space Flight: A Brief Review of Current Knowledge and Future Applications.
    Guillot A; Debarnot U
    Front Physiol; 2019; 10():396. PubMed ID: 31031635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer systems analysis of spaceflight induced changes in left ventricular mass.
    Summers RL; Martin DS; Meck JV; Coleman TG
    Comput Biol Med; 2007 Mar; 37(3):358-63. PubMed ID: 16808910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of Prolonged Spaceflight on Orthostatic Tolerance During Ambulation and Blood Pressure Profiles in Astronauts.
    Fu Q; Shibata S; Hastings JL; Platts SH; Hamilton DM; Bungo MW; Stenger MB; Ribeiro C; Adams-Huet B; Levine BD
    Circulation; 2019 Aug; 140(9):729-738. PubMed ID: 31319685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human cerebral autoregulation before, during and after spaceflight.
    Iwasaki K; Levine BD; Zhang R; Zuckerman JH; Pawelczyk JA; Diedrich A; Ertl AC; Cox JF; Cooke WH; Giller CA; Ray CA; Lane LD; Buckey JC; Baisch FJ; Eckberg DL; Robertson D; Biaggioni I; Blomqvist CG
    J Physiol; 2007 Mar; 579(Pt 3):799-810. PubMed ID: 17185344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mental imagery of object motion in weightlessness.
    Gravano S; Lacquaniti F; Zago M
    NPJ Microgravity; 2021 Dec; 7(1):50. PubMed ID: 34862387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physical Training for Long-Duration Spaceflight.
    Loehr JA; Guilliams ME; Petersen N; Hirsch N; Kawashima S; Ohshima H
    Aerosp Med Hum Perform; 2015 Dec; 86(12 Suppl):A14-A23. PubMed ID: 26630191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in monocyte functions of astronauts.
    Kaur I; Simons ER; Castro VA; Ott CM; Pierson DL
    Brain Behav Immun; 2005 Nov; 19(6):547-54. PubMed ID: 15908177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Skill maintenance in extended spaceflight: a human factors analysis of space and analogue work environments.
    Sauer J; Wastell DG; Hockey GR
    Acta Astronaut; 1996 Oct; 39(8):579-87. PubMed ID: 11540781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Respiratory modulation of human autonomic function: long-term neuroplasticity in space.
    Eckberg DL; Diedrich A; Cooke WH; Biaggioni I; Buckey JC; Pawelczyk JA; Ertl AC; Cox JF; Kuusela TA; Tahvanainen KU; Mano T; Iwase S; Baisch FJ; Levine BD; Adams-Huet B; Robertson D; Blomqvist CG
    J Physiol; 2016 Oct; 594(19):5629-46. PubMed ID: 27029027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Abdomen-high elastic gradient compression garments during post-spaceflight stand tests.
    Stenger MB; Lee SM; Westby CM; Ribeiro LC; Phillips TR; Martin DS; Platts SH
    Aviat Space Environ Med; 2013 May; 84(5):459-66. PubMed ID: 23713210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The First Decade of ISS Exercise: Lessons Learned on Expeditions 1-25.
    Hayes J
    Aerosp Med Hum Perform; 2015 Dec; 86(12 Suppl):A1-A6. PubMed ID: 26630187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Velocity of head movements and sensory-motor adaptation during and after short spaceflight.
    Hlavacka F; Kornilova LN
    J Gravit Physiol; 2004 Jul; 11(2):P13-6. PubMed ID: 16231430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of long-duration spaceflight on postural control during self-generated perturbations.
    Layne CS; Mulavara AP; McDonald PV; Pruett CJ; Kozlovskaya IB; Bloomberg JJ
    J Appl Physiol (1985); 2001 Mar; 90(3):997-1006. PubMed ID: 11181611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.