These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Topological data analysis of the synchronization of a network of Rössler chaotic electronic oscillators. Zabaleta-Ortega A; Masoller C; Guzmán-Vargas L Chaos; 2023 Nov; 33(11):. PubMed ID: 37921586 [TBL] [Abstract][Full Text] [Related]
5. Time Window Determination for Inference of Time-Varying Dynamics: Application to Cardiorespiratory Interaction. Lukarski D; Ginovska M; Spasevska H; Stankovski T Front Physiol; 2020; 11():341. PubMed ID: 32411009 [TBL] [Abstract][Full Text] [Related]
6. Self-similarity and quasi-idempotence in neural networks and related dynamical systems. Minati L; Winkel J; Bifone A; Oświęcimka P; Jovicich J Chaos; 2017 Apr; 27(4):043115. PubMed ID: 28456152 [TBL] [Abstract][Full Text] [Related]
7. Intermittent and sustained periodic windows in networked chaotic Rössler oscillators. He Z; Sun Y; Zhan M Chaos; 2013 Dec; 23(4):043139. PubMed ID: 24387578 [TBL] [Abstract][Full Text] [Related]
8. Transition from amplitude to oscillation death in a network of oscillators. Nandan M; Hens CR; Pal P; Dana SK Chaos; 2014 Dec; 24(4):043103. PubMed ID: 25554023 [TBL] [Abstract][Full Text] [Related]
9. Inferring connectivity of interacting phase oscillators. Yu D; Fortuna L; Liu F Chaos; 2008 Dec; 18(4):043101. PubMed ID: 19123611 [TBL] [Abstract][Full Text] [Related]
10. Synchronization of networks of chaotic oscillators: Structural and dynamical datasets. Sevilla-Escoboza R; Buldú JM Data Brief; 2016 Jun; 7():1185-1189. PubMed ID: 27761501 [TBL] [Abstract][Full Text] [Related]
11. Optimal phase synchronization in networks of phase-coherent chaotic oscillators. Skardal PS; Sevilla-Escoboza R; Vera-Ávila VP; Buldú JM Chaos; 2017 Jan; 27(1):013111. PubMed ID: 28147498 [TBL] [Abstract][Full Text] [Related]
13. Emergence of coherence in complex networks of heterogeneous dynamical systems. Restrepo JG; Ott E; Hunt BR Phys Rev Lett; 2006 Jun; 96(25):254103. PubMed ID: 16907307 [TBL] [Abstract][Full Text] [Related]
14. Coupling conditions for globally stable and robust synchrony of chaotic systems. Saha S; Mishra A; Padmanaban E; Bhowmick SK; Roy PK; Dam B; Dana SK Phys Rev E; 2017 Jun; 95(6-1):062204. PubMed ID: 28709232 [TBL] [Abstract][Full Text] [Related]
15. Oscillation death in diffusively coupled oscillators by local repulsive link. Hens CR; Olusola OI; Pal P; Dana SK Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):034902. PubMed ID: 24125390 [TBL] [Abstract][Full Text] [Related]
16. Quasiperiodic forcing of coupled chaotic systems. Agrawal M; Prasad A; Ramaswamy R Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 2):026202. PubMed ID: 20365633 [TBL] [Abstract][Full Text] [Related]
17. Emergence of synchronization in multiplex networks of mobile Rössler oscillators. Majhi S; Ghosh D; Kurths J Phys Rev E; 2019 Jan; 99(1-1):012308. PubMed ID: 30780214 [TBL] [Abstract][Full Text] [Related]
18. Detecting anomalous phase synchronization from time series. Tokuda IT; Kumar Dana S; Kurths J Chaos; 2008 Jun; 18(2):023134. PubMed ID: 18601500 [TBL] [Abstract][Full Text] [Related]
19. The dynamics of network coupled phase oscillators: an ensemble approach. Barlev G; Antonsen TM; Ott E Chaos; 2011 Jun; 21(2):025103. PubMed ID: 21721781 [TBL] [Abstract][Full Text] [Related]
20. Extracting topological features from dynamical measures in networks of Kuramoto oscillators. Prignano L; Díaz-Guilera A Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 2):036112. PubMed ID: 22587154 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]