BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 26042423)

  • 21. Exploring breast carcinogenesis through integrative genomics and epigenomics analyses.
    Minning C; Mokhtar NM; Abdullah N; Muhammad R; Emran NA; Ali SA; Harun R; Jamal R
    Int J Oncol; 2014 Nov; 45(5):1959-68. PubMed ID: 25175708
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tanshinone I effectively induces apoptosis in estrogen receptor-positive (MCF-7) and estrogen receptor-negative (MDA-MB-231) breast cancer cells.
    Nizamutdinova IT; Lee GW; Son KH; Jeon SJ; Kang SS; Kim YS; Lee JH; Seo HG; Chang KC; Kim HJ
    Int J Oncol; 2008 Sep; 33(3):485-91. PubMed ID: 18695877
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impact of hyperhomocysteinemia on breast cancer initiation and progression: epigenetic perspective.
    Naushad SM; Reddy CA; Kumaraswami K; Divyya S; Kotamraju S; Gottumukkala SR; Digumarti RR; Kutala VK
    Cell Biochem Biophys; 2014 Mar; 68(2):397-406. PubMed ID: 23934182
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deguelin inhibits growth of breast cancer cells by modulating the expression of key members of the Wnt signaling pathway.
    Murillo G; Peng X; Torres KE; Mehta RG
    Cancer Prev Res (Phila); 2009 Nov; 2(11):942-50. PubMed ID: 19861542
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hypomethylation of the synuclein gamma gene CpG island promotes its aberrant expression in breast carcinoma and ovarian carcinoma.
    Gupta A; Godwin AK; Vanderveer L; Lu A; Liu J
    Cancer Res; 2003 Feb; 63(3):664-73. PubMed ID: 12566312
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biological influence of brain-derived neurotrophic factor on breast cancer cells.
    Yang X; Martin TA; Jiang WG
    Int J Oncol; 2012 Oct; 41(4):1541-6. PubMed ID: 22895657
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genome-wide methylation analysis identifies involvement of TNF-α mediated cancer pathways in prostate cancer.
    Kim SJ; Kelly WK; Fu A; Haines K; Hoffman A; Zheng T; Zhu Y
    Cancer Lett; 2011 Mar; 302(1):47-53. PubMed ID: 21237555
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of selenium compounds on proliferation and epigenetic marks of breast cancer cells.
    de Miranda JX; Andrade Fde O; Conti Ad; Dagli ML; Moreno FS; Ong TP
    J Trace Elem Med Biol; 2014 Oct; 28(4):486-91. PubMed ID: 25087768
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differential methylation hybridization profiling identifies involvement of STAT1-mediated pathways in breast cancer.
    Kim JH; Kang HS; Kim TW; Kim SJ
    Int J Oncol; 2011 Oct; 39(4):955-63. PubMed ID: 21674123
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Eliminating epigenetic barriers induces transient hormone-regulated gene expression in estrogen receptor negative breast cancer cells.
    Fleury L; Gerus M; Lavigne AC; Richard-Foy H; Bystricky K
    Oncogene; 2008 Jul; 27(29):4075-85. PubMed ID: 18317449
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative studies on the polyamine metabolism and DFMO treatment of MCF-7 and MDA-MB-231 breast cancer cell lines and xenografts.
    Kremmer T; Pälyi I; Daubner D; Boldizsár M; Vincze B; Paulik E; Sugár J; Pokorny E; Túry E
    Anticancer Res; 1991; 11(5):1807-13. PubMed ID: 1768053
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DNA demethylation by 5-aza-2-deoxycytidine treatment abrogates 17 beta-estradiol-induced cell growth and restores expression of DNA repair genes in human breast cancer cells.
    Singh KP; Treas J; Tyagi T; Gao W
    Cancer Lett; 2012 Mar; 316(1):62-9. PubMed ID: 22082530
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genome-wide DNA methylation analysis in alcohol dependence.
    Zhang R; Miao Q; Wang C; Zhao R; Li W; Haile CN; Hao W; Zhang XY
    Addict Biol; 2013 Mar; 18(2):392-403. PubMed ID: 23387924
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Selective effects of non-thermal atmospheric plasma on triple-negative breast normal and carcinoma cells through different cell signaling pathways.
    Liu Y; Tan S; Zhang H; Kong X; Ding L; Shen J; Lan Y; Cheng C; Zhu T; Xia W
    Sci Rep; 2017 Aug; 7(1):7980. PubMed ID: 28801613
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genome-Wide Methylation Analysis Identifies NOX4 and KDM5A as Key Regulators in Inhibiting Breast Cancer Cell Proliferation by Ginsenoside Rg3.
    Ham J; Lee S; Lee H; Jeong D; Park S; Kim SJ
    Am J Chin Med; 2018; 46(6):1333-1355. PubMed ID: 30149757
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Principles of using Cold Atmospheric Plasma Stimulated Media for Cancer Treatment.
    Yan D; Talbot A; Nourmohammadi N; Cheng X; Canady J; Sherman J; Keidar M
    Sci Rep; 2015 Dec; 5():18339. PubMed ID: 26677750
    [TBL] [Abstract][Full Text] [Related]  

  • 37. ChIP-seq analysis reveals alteration of H3K4 trimethylation occupancy in cancer-related genes by cold atmospheric plasma.
    Lee S; Park S; Lee H; Jeong D; Ham J; Choi EH; Kim SJ
    Free Radic Biol Med; 2018 Oct; 126():133-141. PubMed ID: 30096431
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cold Atmospheric Plasma Induces a Predominantly Necrotic Cell Death via the Microenvironment.
    Virard F; Cousty S; Cambus JP; Valentin A; Kémoun P; Clément F
    PLoS One; 2015; 10(8):e0133120. PubMed ID: 26275141
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of Cold Atmospheric Plasma on Epigenetic Changes, DNA Damage, and Possibilities for Its Use in Synergistic Cancer Therapy.
    Braný D; Dvorská D; Strnádel J; Matáková T; Halašová E; Škovierová H
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830132
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancing cold atmospheric plasma treatment of cancer cells by static magnetic field.
    Cheng X; Rajjoub K; Shashurin A; Yan D; Sherman JH; Bian K; Murad F; Keidar M
    Bioelectromagnetics; 2017 Jan; 38(1):53-62. PubMed ID: 27748977
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.