These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 26042468)

  • 1. Colloidal Nanoparticles for Intermediate Band Solar Cells.
    Vörös M; Galli G; Zimanyi GT
    ACS Nano; 2015 Jul; 9(7):6882-90. PubMed ID: 26042468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New strategies for colloidal-quantum-dot-based intermediate-band solar cells.
    Califano M; Skibinsky-Gitlin ES; Gómez-Campos FM; Rodríguez-Bolívar S
    J Chem Phys; 2019 Oct; 151(15):154101. PubMed ID: 31640383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intermediate band solar cell materials through the doping of group-VA elements (N, P, As and Sb) in Cu
    Jibran M; Sun X; Wang B; Yamauchi Y; Ding Z
    RSC Adv; 2019 Sep; 9(48):28234-28240. PubMed ID: 35530473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The intermediate band solar cell: progress toward the realization of an attractive concept.
    Luque A; Martí A
    Adv Mater; 2010 Jan; 22(2):160-74. PubMed ID: 20217682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Important Role of Optical Absorption in Determining the Efficiency of Intermediate Band Solar Cells and a Design Principle for Perovskite Doping.
    Ma X; Li Z
    J Phys Chem Lett; 2022 Mar; 13(8):2012-2018. PubMed ID: 35195001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of photocurrent due to intermediate-to-conduction-band transitions: a demonstration of a key operating principle of the intermediate-band solar cell.
    Martí A; Antolín E; Stanley CR; Farmer CD; López N; Díaz P; Cánovas E; Linares PG; Luque A
    Phys Rev Lett; 2006 Dec; 97(24):247701. PubMed ID: 17280325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preventing interfacial recombination in colloidal quantum dot solar cells by doping the metal oxide.
    Ehrler B; Musselman KP; Böhm ML; Morgenstern FS; Vaynzof Y; Walker BJ; Macmanus-Driscoll JL; Greenham NC
    ACS Nano; 2013 May; 7(5):4210-20. PubMed ID: 23531107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-organized colloidal quantum dots and metal nanoparticles for plasmon-enhanced intermediate-band solar cells.
    Mendes MJ; Hernández E; López E; García-Linares P; Ramiro I; Artacho I; Antolín E; Tobías I; Martí A; Luque A
    Nanotechnology; 2013 Aug; 24(34):345402. PubMed ID: 23912379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intermediate Band Material of Titanium-Doped Tin Disulfide for Wide Spectrum Solar Absorption.
    Hu K; Wang D; Zhao W; Gu Y; Bu K; Pan J; Qin P; Zhang X; Huang F
    Inorg Chem; 2018 Apr; 57(7):3956-3962. PubMed ID: 29561142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. First-Principles Study of Mn-Doped and Nb-Doped CsPbCl
    Patel MJ; Raval D; Gupta SK; Gajjar PN
    J Phys Chem Lett; 2021 Aug; 12(30):7319-7327. PubMed ID: 34319749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of intermediate band in Ti/V doped γ-In
    Jebasty RM; Sjåstad AO; Vidya R
    RSC Adv; 2022 Jan; 12(3):1331-1340. PubMed ID: 35425181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods.
    Wu K; Zhu H; Lian T
    Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fe/Co doped molybdenum diselenide: a promising two-dimensional intermediate-band photovoltaic material.
    Zhang J; He H; Pan B
    Nanotechnology; 2015 May; 26(19):195401. PubMed ID: 25895582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards improved photovoltaic conversion using dilute magnetic semiconductors (abstract only).
    Olsson P; Guillemoles JF; Domain C
    J Phys Condens Matter; 2008 Feb; 20(6):064226. PubMed ID: 21693888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The generalized Shockley-Queisser limit for nanostructured solar cells.
    Xu Y; Gong T; Munday JN
    Sci Rep; 2015 Sep; 5():13536. PubMed ID: 26329479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generating free charges by carrier multiplication in quantum dots for highly efficient photovoltaics.
    Ten Cate S; Sandeep CS; Liu Y; Law M; Kinge S; Houtepen AJ; Schins JM; Siebbeles LD
    Acc Chem Res; 2015 Feb; 48(2):174-81. PubMed ID: 25607377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detailed balance model for intermediate band solar cells with photon conservation.
    Lin CC; Liu WL; Shih CY
    Opt Express; 2011 Aug; 19(18):16927-33. PubMed ID: 21935053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Half-filled intermediate bands in doped inorganic perovskites for solar cells.
    Ma X; Li Z
    Phys Chem Chem Phys; 2020 Nov; 22(41):23804-23809. PubMed ID: 33064115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Third generation photovoltaics based on multiple exciton generation in quantum confined semiconductors.
    Beard MC; Luther JM; Semonin OE; Nozik AJ
    Acc Chem Res; 2013 Jun; 46(6):1252-60. PubMed ID: 23113604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photochemical electronic doping of colloidal CdSe nanocrystals.
    Rinehart JD; Schimpf AM; Weaver AL; Cohn AW; Gamelin DR
    J Am Chem Soc; 2013 Dec; 135(50):18782-5. PubMed ID: 24289732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.