These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 26042532)

  • 21. Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments: influence of pH, ionic strength, size, and adsorption of humic acid.
    Bian SW; Mudunkotuwa IA; Rupasinghe T; Grassian VH
    Langmuir; 2011 May; 27(10):6059-68. PubMed ID: 21500814
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of particle size on the aggregation behavior of nanoparticles: Role of structural hydration layer.
    Sun H; Jiao R; An G; Xu H; Wang D
    J Environ Sci (China); 2021 May; 103():33-42. PubMed ID: 33743914
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aggregation behavior of engineered nanoparticles and their impact on activated sludge in wastewater treatment.
    Zhou XH; Huang BC; Zhou T; Liu YC; Shi HC
    Chemosphere; 2015 Jan; 119():568-576. PubMed ID: 25127355
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impact of Proteins on Aggregation Kinetics and Adsorption Ability of Hematite Nanoparticles in Aqueous Dispersions.
    Sheng A; Liu F; Xie N; Liu J
    Environ Sci Technol; 2016 Mar; 50(5):2228-35. PubMed ID: 26824780
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stability and characterization of mixture of three particle system containing ZnO-CuO nanoparticles and clay.
    Parsai T; Kumar A
    Sci Total Environ; 2020 Oct; 740():140095. PubMed ID: 32927543
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Combined effects of water temperature and chemistry on the environmental fate and behavior of nanosized zinc oxide.
    Majedi SM; Kelly BC; Lee HK
    Sci Total Environ; 2014 Oct; 496():585-593. PubMed ID: 25108799
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of phosphate and solution pH on the mobility of ZnO nanoparticles in saturated sand.
    Li L; Schuster M
    Sci Total Environ; 2014 Feb; 472():971-8. PubMed ID: 24355393
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of combinatorial environmental factors in the behavior and fate of ZnO nanoparticles in aqueous systems: a multiparametric analysis.
    Majedi SM; Kelly BC; Lee HK
    J Hazard Mater; 2014 Jan; 264():370-9. PubMed ID: 24316809
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Aggregation kinetics of different surface-modified polystyrene nanoparticles in monovalent and divalent electrolytes.
    Yu S; Shen M; Li S; Fu Y; Zhang D; Liu H; Liu J
    Environ Pollut; 2019 Dec; 255(Pt 2):113302. PubMed ID: 31597113
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Aggregation Kinetics of Diesel Soot Nanoparticles in Wet Environments.
    Chen C; Huang W
    Environ Sci Technol; 2017 Feb; 51(4):2077-2086. PubMed ID: 28090765
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sulfidation mechanism for zinc oxide nanoparticles and the effect of sulfidation on their solubility.
    Ma R; Levard C; Michel FM; Brown GE; Lowry GV
    Environ Sci Technol; 2013 Mar; 47(6):2527-34. PubMed ID: 23425191
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Attachment efficiency of nanoparticle aggregation in aqueous dispersions: modeling and experimental validation.
    Zhang W; Crittenden J; Li K; Chen Y
    Environ Sci Technol; 2012 Jul; 46(13):7054-62. PubMed ID: 22260181
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Initial transport and retention behaviors of ZnO nanoparticles in quartz sand porous media coated with Escherichia coli biofilm.
    Jiang X; Wang X; Tong M; Kim H
    Environ Pollut; 2013 Mar; 174():38-49. PubMed ID: 23246745
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The toxicology of ion-shedding zinc oxide nanoparticles.
    Liu J; Feng X; Wei L; Chen L; Song B; Shao L
    Crit Rev Toxicol; 2016; 46(4):348-84. PubMed ID: 26963861
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Experimental and theoretical studies of the colloidal stability of nanoparticles-a general interpretation based on stability maps.
    Segets D; Marczak R; Schäfer S; Paula C; Gnichwitz JF; Hirsch A; Peukert W
    ACS Nano; 2011 Jun; 5(6):4658-69. PubMed ID: 21545143
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Aggregation kinetics of alginate-coated hematite nanoparticles in monovalent and divalent electrolytes.
    Chen KL; Mylon SE; Elimelech M
    Environ Sci Technol; 2006 Mar; 40(5):1516-23. PubMed ID: 16568765
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Stability of C60 nanoparticles in aquatic systems].
    Fang H; Shen BB; Jing J; Lu JL; Wang Y
    Huan Jing Ke Xue; 2014 Apr; 35(4):1337-42. PubMed ID: 24946585
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Heteroagglomeration of zinc oxide nanoparticles with clay mineral modulates the bioavailability and toxicity of nanoparticle in Tetrahymena pyriformis.
    Gupta GS; Senapati VA; Dhawan A; Shanker R
    J Colloid Interface Sci; 2017 Jun; 495():9-18. PubMed ID: 28182957
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Heteroaggregation of engineered nanoparticles and kaolin clays in aqueous environments.
    Wang H; Dong YN; Zhu M; Li X; Keller AA; Wang T; Li F
    Water Res; 2015 Sep; 80():130-8. PubMed ID: 26001279
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mutagenicity of ZnO nanoparticles in mammalian cells: Role of physicochemical transformations under the aging process.
    Wang MM; Wang YC; Wang XN; Liu Y; Zhang H; Zhang JW; Huang Q; Chen SP; Hei TK; Wu LJ; Xu A
    Nanotoxicology; 2015; 9(8):972-82. PubMed ID: 25676621
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.